TYPENBLATT

T 8015-10

Bauart 240 · Pneumatische Stellventile Typ 3241-1 und Typ 3241-7 Durchgangsventil Typ 3241 · DIN-Ausführung Kundenstandard SAM001

Anwendung

Stellventil für die Verfahrenstechnik und den Anlagenbau

Nennweite DN 15 bis 150 Nenndruck PN 10 bis 40 Temperaturen -196 bis +450 °C

Typ 3241-1, DN 15 bis 150

Typ 3241-7, DN 15 bis 80 Schmiedestahl

Mit dem Kundenstandard SAM001 bietet SAMSON Geräte gemäß der NAMUR-Empfehlung NE 53 an. Über die Anmeldung zum ▶ NE53-Newsletter werden Nutzer dieser Geräte über Hard- und Softwareänderungen automatisch informiert.

Merkmale

Durchgangsventil Typ 3241 mit

- pneumatischem Antrieb Typ 3271 als Stellventil Typ 3241-1
- pneumatischem Antrieb Typ 3277 als Stellventil Typ 3241-7 für den integrierten Anbau eines Stellungsreglers

Ventilgehäuse aus

- Stahlguss
- · korrosionsfestem Stahlguss
- kaltzähem Stahlguss
- Schmiedestahl
- · korrosionsfestem Schmiedestahl
- Hastelloy[®]

Einteiliges Ventiloberteil

Ventilkegel

- · metallisch dichtend
- · weich dichtend
- metallisch dichtend für erhöhte Anforderungen

Optional mit RFID-Transponder mit eineindeutiger Kennzeichnung gemäß DIN SPEC 91406.

Die im Baukastensystem ausgeführten Stellventile können mit verschiedenen Anbaugeräten ausgerüstet werden: Stellungsregler, Grenzsignalgeber, Magnetventile und andere Anbaugeräte nach DIN EN 60534-6-1¹¹ und NAMUR-Empfehlung (vgl. Übersichtsblatt ► T 8350).

¹⁾ Zubehör erforderlich, vgl. zugehörige Antriebsdokumentation

Ausführungen

Normalausführung für Temperaturen von -10 bis +220 °C

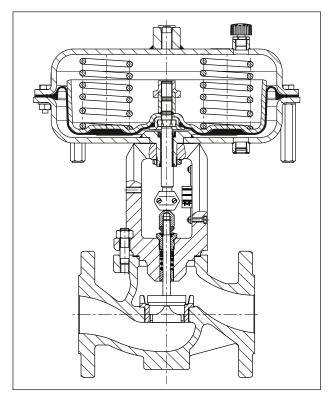
- Typ 3241-1 · DN 15 bis 150 mit pneumatischem
 Antrieb Typ 3271 (vgl. Typenblätter ➤ T 8310-1,
 ▼ T 8310-2 und ➤ T 8310-3)
- Typ 3241-7 · DN 15 bis 150 mit pneumatischem Antrieb Typ 3277 für den integrierten Stellungsregleranbau (vgl. Typenblatt ► T 8310-1)

Weitere Ausführungen

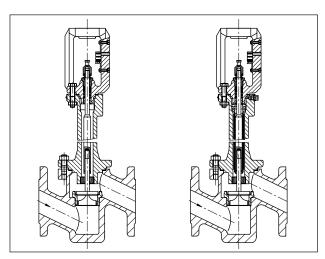
- Anschweißenden
- Nachziehbare Stopfbuchspackung · vgl. Übersichtsblatt ► T 8000-6
- Strömungsteiler zur Reduzierung des Geräuschpegels · vgl. Typenblätter ► T 8081 und
 T 8082
- Ventilkegel mit Druckentlastung · vgl. technische Daten
- Ausführung mit Isolier- oder Balgteil · vgl. technische Daten
- **Zusätzliche Handverstellung** · vgl. Typenblätter ► T 8310-1, ► T 8310-2, ► T 8310-3

Aufbau und Wirkungsweise

Das Ventil wird in Pfeilrichtung durchströmt. Die Stellung des Ventilkegels bestimmt dabei den Durchflussquerschnitt zwischen Sitz und Kegel.


Je nach Anordnung der Druckfedern im pneumatischen Antrieb Typ 3271 oder Typ 3277 (vgl. Typenblätter ► T 8310-1, ► T 8310-2 und ► T 8310-3) hat das Stellventil zwei unterschiedliche Sicherheitsstellungen, die bei Ausfall der Hilfsenergie wirksam werden:

 Antriebsstange durch Feder ausfahrend (FA):


Bei Ausfall der Hilfsenergie schließt das Ventil.

Antriebsstange durch Feder einfahrend (FE):
 Bei Ausfall der Hilfsenergie öffnet das Ventil.

Die folgenden Bilder zeigen Beispielkonfigurationen.

Bild 1: *Stellventil Typ 3241-1 · DN 15 bis 150*

Bild 2: Ventil Typ 3241 · DN 15 bis 80 · Schmiedestahlausführung · links: mit Isolierteil, rechts: mit Balgteilabdichtung

Tabelle 1: Technische Daten für Typ 3241

Nennwe	eite	DI	ı	15	.150		15 · 25 · 4	10 · 50 · 80
Werksto	off		Stahlguss 1.0619	Korrosi- onsf. Stahl- guss 1.4408	Stahlguss 1.6220/ 1.1138	Korrosi- onsf. Stahl- guss 1.4308	Schmie- destahl 1.0460	Korro- sionsf. Schmie- destahl 1.4404
Nenndru	uck	PI	1		10 · 16 · 3	25 · 40		
Anschlus	ccart	Flansch	е	Forn	n B1, C, D gemä	iß DIN EN 1092	-1	
Aliscilla	33611	Anschweißende	DIN EN 1	2627 nur für DI	N 25, 40, 50, 80	, 100, 150		_
Sitz-Kege	el-Dichtung					veich dichtend nöhte Anforder		
Kennlini	enform		gleio	hprozentig · lin	ear (entsprech	end Übersichts	blatt 🟲 T 800	0-3)
Stellverh	nältnis			50 : 1 be	ei DN 1550 · 3	0 : 1 bei DN 65	150	
Heizmar	ntel			bis D	N 100: PN 25 ·	ab DN 125: PN	16	
Konform	nität				C	ϵ		
Optiona	ler RFID-Transpon	der	Zer ▶ wv	atzbereiche ger rtifikate. Diese [ww.samsongrou maximal zuläss	Dokumente ste ມp.com > Prodເ	hen im Internet ikte > Elektronis	t zur Verfügur sches Typenso	ng: child
Temper	aturbereiche in ^o	°C · zulässige Betri	bsdrücke gemä	ß Druck-Tempe	ratur-Diagramr	n (vgl. Übersich	ntsblatt 🕨 T 80	000-2)
Gehäuse	e mit Standard-Ob	erteil			alle Nennweite	n: -10+220		
		Isolierte	·10+400	-50+450	-50+300	-50+300	-10+400	-50+450
Gehäu-		langem Isolierte	il –	-196+450	-	-196+300	-	-196+450
se mit		Balgte	·10+400	-50+450	-50+300	-50+300	-10+400	-50+450
		langem Balgte	il –	-196+450		-196+300	-	-196+450
	Standard	met. dichten	t		-196	+450		
Ventil-	Staridard	weich dichten	b		-196	+220		
kegel	druckentlastet	mit PTFE-Rin	g		-50+	220		
	uruckentiastet	mit Graphitrin	g		104	50		
Leckage	e-Klasse nach DIN	I EN 60534-4						
	Standard	met. dichten	b	Standard	d: IV · für erhöh	te Anforderung	gen: V ³⁾	
Ventil-	Stariuaru	weich dichten	d		VI			
kegel	druckentlastet	met. dichten			sführung: V · fü	raphit-Drucken r erhöhte Anfo lastungsring) a	rderun-	

³⁾ Leckage-Klasse V für Temperaturen <-50 °C auf Anfrage

Tabelle 2: Werkstoffe

Ventilgehäuse	1)	Stahlguss 1.0619	Korrosi- onsf. Stahl- guss 1.4408	Stahlguss 1.6220/ 1.1138	Korrosi- onsf. Stahl- guss 1.4308	Schmiede- stahl 1.0460	Korrosionsf. Schmiede- stahl 1.4571
Ventiloberteil			1.4408/ 1.4401 · 1.4404 ⁵⁾	1.0566/ 1.6220	1.4308/ 1.4301	1.0460	1.4401 · 1.4404 ⁵⁾
Sitz ²⁾		1.4006/1.4008	1.4404/ 1.4409	1.4006/ 1.4008	1.4301/ 1.4308	1.4006/ 1.4008	1.4404/ 1.4409
Kegel ²⁾		1.4006 (1.4404)/1.4008	1.4404/ 1.4409	1.4006 (1.4404)/ 1.4008	1.4301/ 1.4308	1.4006 (1.4404)/ 1.4008	1.4404/ 1.4409
			Dichtri	ng bei Weichdich	tung: PTFE mit Gl	asfaser	
Kegelabdichtun	g		_	kentlastetem Ke e oder Graphitrir		-	-
Führungsbuchs	e	1.4104	1.4404	1.4404	1.4301	1.4104	1.4404
Stopfbuchspack	kung³)		V-Ring	g-Packung PTFE m	nit Kohle · Feder ´	1.4310	
Gehäusedichtui	ng			Metall-	Graphit		
Isolierteil		1.0460	1.4401 · 1.4404 ⁵⁾	1.0566	1.4301	1.0460	1.4401 · 1.4404 ⁵⁾
Balgteil	Zwischenstück	1.0460	1.4401 · 1.4404 ⁵⁾	1.0566	1.4301	1.0460	1.4401 · 1.4404 ⁵⁾
	Metallbalg		1.45714)		1.4541	1.45	571 ⁴⁾

¹⁾ Sonderwerkstoff auf Ni-Basis-Legierung: 9.4610

$K_{\text{vs}}\text{-Werte}$

Kenndaten für die Durchflussberechnung nach DIN IEC 60534-2-1 und DIN IEC 60534-2-2: F_L = 0,95, x_T = 0,75

Tabelle 3: Übersicht mit Strömungsteiler ST 1 (K_{VS}-1), ST 2 (K_{VS}-2) oder ST 3 (K_{VS}-3)

K _{vs}	0,1 0,16 0,25	0,4	0,63	1,0	1,6	2,5	4,0	6,3	10	16	25	40	60	80	63	100	160	200	260	250
K _{vs} -1		-	-		1,45	2,2	3,6	5,7	9	14,5	22	36	54	72	57	90	144	180	234	225
K _{vs} -2				-	-				8	13	20	32	48	63	50	80	125	160	210	200
K _{vs} -3				-	_				7,5	12	20	30	-	-	47	75	120	-	-	190
Sitz- Ø in mm	3		6			12		2	4	31	38	48	63	80	63	80	100	110	130	125
Hub in mm							1	5									30			60

Alle Sitze und metallisch dichtende Kegel auch mit Stellite®-Panzerung für die Dichtfläche; für Nennweiten ≤DN 100 werden Kegel bis SB 38 aus Vollstellite® gefertigt.

³⁾ Packungen Form D (PTFE-rein, federbelastet) und Form H auf Anfrage

Werkstoffe 2.4819 und 2.4360 auf Anfrage

⁵⁾ Werkstoff-Doppelstempelung

Tabelle 4: Ausführungen ohne Strömungsteiler

	0,1 0,16																		
K _{vs}	0,25	0,4	0,63	1,0	1,6	2,5	4,0	6,3	10	16	25	40	60	80	63	100	160	200	260
DN																			
15	•	•	•	•	•	•													
20	•	•	•	•	•	•	•	•											
25	•	•	•	•	•	•	•	•	•										
32		•	•	•	•	•	•	•	•	•									
40		•	•	•	•	•	•	•	•	•	•								
50		•	•	•	•	•	•	•	•	•	•								
65											•		•						
80											•		•	•3)		•1)			
100															•	•3)	•3)		
125															•	•3)	•	•3)	
150															•	•3)	•3)		•3)

¹⁾ Mit Überhub 19 mm (nicht bei Balgausführung)

Tabelle 5: Ausführungen mit Strömungsteiler ST 1 (K_{VS}-1)

K _{vs} -1		-	1,45	2,2	3,6	5,7	9	14,5	22	36	54	72	57	90	144	180	234
DN			,														
15			•	•	•												
20			•	•	•												
25			•	•	•												
32						•	•	•									
40						•	•	•	•								
50						•	•	•	•	•							
65									•	•	•						
80									•	•	•	•2)					
100													•	•2)	•2)		
125													•	•2)	•	•2)	
150													•	•2)	•2)		•2)

²⁾ Ausführungen auch mit Druckentlastung

Tabelle 6: Ausführungen mit Strömungsteiler ST 2 (K_{VS}-2)

K _{vs} -2			_		8	13	20	32	48	-	50	80	125	160	210
DN									,						
15															
20															
25															
32					•	•									
40					•	•	•								
50					•	•	•	•							
65							•	•	•						
80							•	•	•						
100											•	•1)	•		
125												•1)	•		
150											•	•1)	•1)		•

¹⁾ Ausführungen auch mit Druckentlastung

³⁾ Ausführungen auch mit Druckentlastung

Tabelle 7: Ausführungen mit Strömungsteiler ST 3 (K_{vs}-3)

K _{vs} -3			-		7,5	12	20	30	-	-	47	75	120	-	-
DN															
15															
20															
25															
32															
40															
50					•1)										
65						•	•	•							
80						•	•	•							
100											•				
125												•2)			
150											•	•2)	•2)		

¹⁾ Nicht mit Balgteil oder Isolierteil

Differenzdrücke: Zulässige Differenzdrücke sind im Übersichtsblatt ► T 8000-4 aufgeführt.

²⁾ Ausführungen auch mit Druckentlastung

Maße und Gewichte

Die nachfolgenden Tabellen geben einen Überblick über die Maße und Gewichte für das Ventil Typ 3241 in Normalausführung.

Maße in mm · Gewichte in kg

Tabelle 8: Maße Ventil Typ 3241 bis DN 150

Ventil	DN	15	20	25	32	40	50	65	80	100	125	150
Länge L		130	150	160	180	200	230	290	310	350	400	480
H1 bei Antrieb	≤750	222	222	222	223	223	223	262	262	354	363	390
cm ²	1000 1400-60				-	=				413	423	450
H2 ¹⁾ für	Stahlguss	442)	442)	442)	72	722)	722)	98	982)	118	144	175
nz*iui	Schmiedestahl	53	-	70	-	94	100	-	132		-	

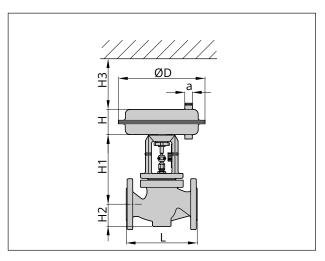
Das Maß H2 beschreibt den Abstand von der Mitte des Strömungskanals bis zur Unterseite des Gehäusebodens.

Tabelle 9: Maße Ventil Typ 3241 mit Isolier- oder Balgteil bis DN 150

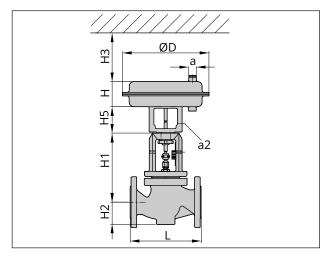
Nennweite		DN	15	20	25	32	40	50	65	80	100	125	150
		Isolier-/Balg- teil											
	≤750	kurz		409			410		45	51	636	645	672
H4 bei An-	≥/30	lang		713			714		75	55	877	886	913
trieb cm ²	1000	kurz				-	-				695	705	732
	1400-60	lang				-	-				936	946	973

Tabelle 10: Weitere Maße¹⁾ in Kombination mit pneumatischem Antrieb Typ 3271 oder Typ 3277

Antriebsflä	che	cm²	120	175v2	350	350v2	355v2	750v2	1000	1400-60
Membran-@	D	mm	168	215	280	280	280	394	462	530
H ²⁾	Typ 3271	mm	69	78	82	92	131	236	403	337
H ²⁾	Typ 3277	mm	69	78	82	82	121	236	-	-
H3 ³⁾		mm	110	110	110	110	110	190	610	610
H5	Typ 3277	mm	88	101	101	101	101	101	-	-
Gewinde	Typ 3271		M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M60 x 1,5	M60 x 1,5
Gewinde	Typ 3277		M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	-	-
a	Typ 3271		G 1/8 (1/8 NPT)	G ¼ (¼ NPT)	G % (% NPT)	G % (% NPT)	G % (% NPT)	G % (% NPT)	G ¾ (¾ NPT)	G ¾ (¾ NPT)
a2	Typ 3277		-	G 3/8	G 3%	G 3/8	G 3/8	G 3/8	-	-


Die aufgeführten Maße sind theoretisch ermittelte, maximale Konstruktionswerte einer spezifischen Standardvariante und bilden nicht jede mögliche Einsatzsituation des Geräts ab. Die tatsächlichen Werte einzelner Geräte können konfigurationsabhängig und anwendungsspezifisch variieren.

Das Maß H2 ist bei diesem Ventil nicht der tiefste Punkt des Ventils. Der tiefste Punkt dieses Ventils ist die Unterseite des Anschlussflansches dessen Maß sich aus der Norm des Anschlussflansches ergibt.


²⁾ Höhe inkl. Hebeöse bzw. Innengewinde und Ringschraube nach DIN 580. Höhe des Anschlagwirbels kann abweichen. Antriebe bis 355v2 cm² ohne Hebeöse bzw. Innengewinde.

³⁾ Minimaler freier Abstand für Ausbau des Antriebs

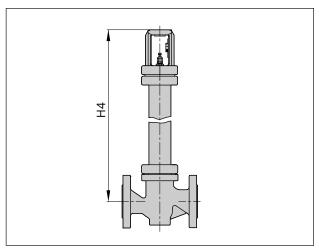

Maßbilder

Bild 3: Typ 3241-1 (pneumatischer Antrieb Typ 3271) bis Nennweite DN 150/NPS 6/DN 150A

Bild 4: Typ 3241-7 (pneumatischer Antrieb Typ 3277) bis Nennweite DN 150/NPS 6/DN 150A

Bild 5: Typ 3241 mit Isolier-/Balgteil bis Nennweite DN 150/NPS 6/DN 150A

Tabelle 11: Gewichte Ventil Typ 3241

Ventil	DN	15	20	25	32	40	50	65	80	100	125	150
Ausführung mit S	tandardobert	teil										
Ventil ¹⁾ ohne Antri	eb	6	7,5	8	12	14	18	29	34	52	81	108
Ausführung mit I	solierteil											
	Isolierteil		_									
Ventil ¹⁾ ohne An- trieb	kurz	9	10,5	11	18	20	24	37	42	70	106	138
	lang	13	14,5	15	22	24	28	41	46	78	114	146
Ausführung mit B	Balgteil											
.,	Balgteil											
Ventil ¹⁾ ohne An- trieb	kurz	9	10,5	11	18	20	24	37	42	70	106	138
	lang	13	14,5	15	22	24	28	41	46	78	114	146

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

Tabelle 12: *Gewichte*¹⁾ *pneumatische Antriebe Typ 3271 und Typ 3277*

Antrieb Typ	Antriebsfläc	he cm²	120	175v2	350	350v2	355v2	750v2	1000	1400-60
3271	ohne Handverstel- lung	kg	2,5	6	8	11,5	15	36	80	70
3271	mit Handverstellung	kg	4	10	13	16,5	20	41	180	175
3277	ohne Handverstel- lung	kg	3,2	10	12	15	19	40	_	-
3277	mit Handverstellung	kg	4,5	14	17	20	24	45	-	-

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Anzahl der Federn usw.) abweichen.

Bestelltext

Durchgangsventil Typ 3241 Nennweite DN ... Nenndruck PN ... Gehäusewerk- vgl. Tab. 2

stoff

Anschlussart Flansche oder Anschweißenden Sitz-Kegel-Dichtung metallisch dichtend, weich dichtend

für erhöhte Anforderungen Kennlinie gleichprozentig oder linear Pneumat. Antrieb Typ 3271 oder Typ 3277 Sicherheitsstel- Ventil ZU oder Ventil AUF

lung

Durchflussmedi- Dichte in kg/m³ und Tempera-

m tur in °C

Durchfluss in kg/h oder m³/h im Norm-

oder Betriebszustand

Druck p_1 und p_2 in bar (Absolutdruck

p_{abs}) bei minimalem, normalem und maximalem Durchfluss

RFID-Transpon-

Anbaugeräte

der

Stellungsregler/Grenzsignalge-

ber

ja/nein

Zugehörige Übersichtsblätter Zugehörige Typenblätter für pneumatische Antriebe

Typ 3271/3277

Zugehörige Einbau- und Bedie-

nungsanleitung

Zugehöriges Sicherheitshand-

buch

► T 8000-X

► T 8310-1 bis

► T 8310-3

► EB 8015

► SH 8015