TYPENBLATT

T 8004-GR

Bauart SMS · Pneumatische Stellventile SMS MG-1 und SMS MG-7 Durchgangsventil Typ 251GR

ANSI-Ausführung

Anwendung

Stellventil für die Verfahrenstechnik bei hohen industriellen Anforderungen

Nennweite NPS ½ bis 8 Nenndruck Class 150 bis 900

Temperaturen -58 bis +1022 °F (-50 bis +550 °C)

Bild 1: SMS MG-1: Durchgangsventil Typ 251GR mit pneumatischem Antrieb Typ 3271

Durchgangsventil Typ 251GR mit

- pneumatischem Antrieb Typ 3271 (Stellventil SMS MG-1)
- pneumatischem Antrieb Typ 3277 (Stellventil SMS MG-7) für den integrierten Anbau eines Stellungsreglers

Merkmale

- Kegel und Cage-Garnitur im Feld tauschbar
- Gehäuse aus Stahlguss
- Gehäuse aus korrosionsfestem Stahlguss
- weich dichtend
- metallisch dichtend
- metallisch dichtend für erhöhte Anforderungen
- druckentlastet zur Beherrschung großer Differenzdrücke

Optional mit RFID-Transponder mit eineindeutiger Kennzeichnung gemäß DIN SPEC 91406.

Die im Baukastensystem ausgeführten Stellventile können mit verschiedenen Anbaugeräten ausgerüstet werden: Stellungsregler, Grenzsignalgeber, Magnetventile und andere Anbaugeräte nach DIN EN 60534-6-1¹¹ und NAMUR-Empfehlung (vgl. Übersichtsblatt ► T 8350).

Zubehör erforderlich, vgl. zugehörige Antriebsdokumentation

Ausführungen

Betriebstemperatur (Mediumstemperatur) mit PTFE-Packung für Temperaturen von -20 bis +482 °F (-29 bis +250 °C), mit Graphit-Packung in Kombination mit Isolierteil von -58 bis +1022 °F (-50 bis +550 °C) oder mit Balgteil (unabhängig von der Packungsausführung) bis +797 °F (+425 °C),

Nennweite NPS ½ bis 8, Class 150 bis 900 (vgl. Tab. 1)

- SMS MG-1 (Bild 1) Durchgangsventil
 Typ 251GR und Antrieb Typ 3271 mit 350 bis 2800 cm² Antriebsfläche (vgl. Typenblätter
 ▼ T 8310-1, ▼ T 8310-2 und ▼ T 8310-3)
- SMS MG-7 Durchgangsventil Typ 251GR mit Antrieb Typ 3277 mit 350 bis 750v2 cm² Antriebsfläche für den integrierten Stellungsregleranbau (vgl. Typenblatt ► T 8310-1)

Weitere Ausführungen

- Ventilkegel mit Druckentlastung
- Zusätzliche Handverstellung vgl. Typenblatt
 T 8310-1
- Stellventil Typ 251GR mit Handantrieb
 Typ 3273 für Ventile mit max. 30 mm Nennhub und seitliche Handverstellung für Hub
 >30 mm, vgl. Typenblatt ► T 8312
- Elektrisches Stellventil SMS MG-TP auf Anfrage
- Ausführung mit geklemmtem oder geschraubtem Sitz oder mit Cage-Garnitur
- Ausführung mit Isolierteil für hohe Temperaturen
- Ausführung mit Balgteil

Wirkungsweise der geklemmten/geschraubten Ausführung

Das Ventil wird in Pfeilrichtung durchströmt. Der Ventilkegel bestimmt dabei den Durchflussquerschnitt.

Die Ventile können zur Geräuschreduzierung mit einem Strömungsteiler ST1 ausgestattet werden (vgl. Typenblatt ► T 8081).

Bei hohen Drücken oder Differenzdrücken am Kegel ist bei Bedarf eine Druckentlastung vorzusehen.

Bild 2 und Bild 3 zeigen Beispielkonfigurationen.

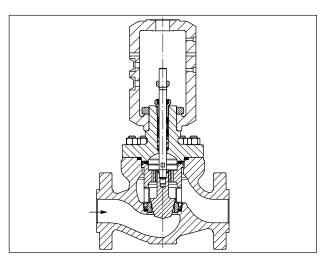
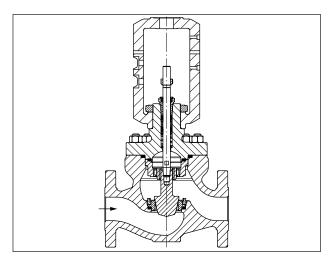



Bild 2: Durchgangsventil Typ 251GR mit geklemmtem Sitz

Bild 3: Durchgangsventil Typ 251GR mit geschraubtem Sitz

Wirkungsweise der Cage-Ausführung

Das Ventil wird entsprechend der Pfeilrichtung auf dem Ventilgehäuse vom Medium durchströmt. Bei einer Änderung des Stellsignals, das auf den Antrieb wirkt (z. B. pneumatischer Druck), ändert sich die Hubhöhe des Kolbens und somit das Ausmaß der Ventilöffnung. Die Stellung des Kolbens und die Kontur des Käfigs bestimmen den freigegebenen Querschnitt und damit den Volumenstrom.

Bild 4 zeigt eine Beispielkonfiguration.

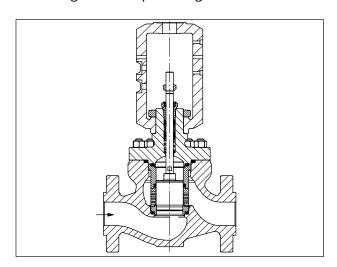


Bild 4: Durchgangsventil Typ 251GR mit Cage-Garnitur

Alle in Bild 2 bis Bild 4 dargestellten Garnituren lassen sich im Feld, ohne Änderungen an den drucktragenden bzw. druckhaltenden Teilen, beliebig gegeneinander austauschen.

Sicherheitsstellungen

Je nach Anordnung der Druckfedern im pneumatischen Antrieb Typ 3271 oder Typ 3277 (vgl. Typenblätter ► T 8310-1, ► T 8310-2 und ► T 8310-3) hat das Stellventil zwei unterschiedliche Sicherheitsstellungen, die bei Ausfall der Hilfsenergie wirksam werden:

- Antriebsstange durch Feder ausfahrend (FA):
 - Bei Ausfall der Hilfsenergie schließt das Ventil.
- Antriebsstange durch Feder einfahrend (FE):
 Bei Ausfall der Hilfsenergie öffnet das Ventil.

Tabelle 1: Technische Daten für Typ 251GR · ANSI-Ausführung

Werkstoff		Stahlguss A216 WCC	Stahlguss A217 WC6	Korrosionsfester Stahlguss A351 CF8M
Nennweite un	d Nenndruck		Class 150/300/600: NPS ½ bis 630 Class 900: NPS ½ bis 630	8
Anschlussart	Flansche		RF und RTJ nach ASME B16.5	
Alisciliussait	Anschweißenden		nach ASME B16.25	
Sitz-Kegel-Dich	ntung	metallisch dichtend	· metallisch dichtend für erhö	öhte Anforderungen
Kennlinienforn	m	gleichp	rozentig · linear · modlinear	· Auf/Zu
Stellverhältnis			50:1	
Konformität			CE	
Optionaler RFI	D-Transponder	Zertifikate. Diese www.samsongro	emäß der technischen Spezifik Dokumente stehen im Intern oup.com > Produkte > Elektror Temperatur am Transponder	et zur Verfügung: nisches Typenschild
Temperaturb ► T 8000-2)	ereiche ²⁾ in °F (°C) · Zulässige	Betriebsdrücke gemäß Dru	ck-Temperatur-Diagramme	n (vgl. Übersichtsblatt
Gehäuse mit S	tandardoberteil	-20+482 (-29+250) m	it PTFE-Packung · bis +797 (+4	25) mit Graphit-Packung
Gehäuse mit Is	solierteil	-20+797 (-29+425)	-20+932 (-29+500)	-58+1022 (-50+550)
Gehäuse mit B	Balgteil	-20+797 (-29+425)	-20+932 (-29+500)	-58+797 (-50+425)
	metallisch dichtend		-58+1022 (-50+550)	
Garnitur ¹⁾	druckentlastet mit PTFE		-58+482 (-50+250)	
Garritur	druckentlastet metallisch dichtend ⁴⁾⁵⁾	F	Raumtemperatur+1022 (+550	0)
Leckage-Klass	se nach ANSI FCI 70-2			
	metallisch dichtend	Standa	rd: IV · für erhöhte Anforderu	ngen: V
Garnitur	druckentlastet metallisch dichtend	mit PTFE-Ring	(Standard): IV · für erhöhte An	forderungen: V

Nur in Verbindung mit geeignetem Gehäusewerkstoff

 $^{^{\}rm 2)}$ $\,$ Temperaturgrenzen (Angabe in °F und °C) sind keine direkten Umrechnungswerte

Class 900 nur bei Ausführung mit geklemmtem Sitz oder Cage-Garnitur

⁴⁾ nur bei Ausführung mit Cage-Garnitur

nur bis NPS 4

Tabelle 2: Werkstoffe für Typ 251GR · ANSI-Ausführung

Normalausführun	g Gehäuse	Sta	hlguss A216	wcc	Sta	hlguss A217	wc6	Korrosi- onsfester Stahlguss A351 CF8M
Ventiloberteil			A216 WCC			A217 WC6		A351 CF8M
Kegelstange				316/3	316L oder XM	-19-H		,
Dichtring bei Druck (Kegel/Kolben)	entlastung			PTFE m	it Kohle · met	callisch ⁷⁾		
Führungsbuchse			4201)			4201)6)		B574 N06455
Stopfbuchspackung			PTFE, auße	n- oder innenfe	ederbelastet	oder Graphit,	nachziehbar	,
Gehäusedichtung				Spiraldi	chtung Grapl	nit/316L		
Ausführung mit	Kegel ³⁾	410 ²⁾	4201)	316/316L ²⁾	4102)	4201)	316/316L ²⁾	316/316L ²⁾
geschraubtem Sitz	Sitz	4102)	4201)	316/316L ²⁾	4102)	4201)	316/316L ²⁾	316/316L ²⁾
und Kegel	Sitzbefestigung		CA6NM-B	'		CA6NM-B	•	CF3M
Ausführung mit	Kegel ³⁾	4102)	4201)	316/316L ²⁾	410 22)	4201)	316/316L ²⁾	316/316L ²⁾
geklemmtem Sitz	Sitz	4102)	4201)	316/316L ²⁾	410 22)	4201)	316/316L ²⁾	316/316L ²⁾
und Kegel	Sitzbefestigung		CA6NM-B	'		CA6NM-B	<u>'</u>	CF8M
	Kolben	410 21)	4201)	316/316L ⁴⁾⁵⁾	410 21)	4201)	316/316L ⁴⁾⁵⁾	316/316L ⁴⁾⁵⁾
Ausführung mit	Käfig	410 21)	4201)	316/316L	410 21)	4201)	316/316L	316/316L
Kolben und Käfig	Sitz	410 21)	4201)	316/316L ²⁾	410 21)	4201)	316/316L ²⁾	316/316L ²⁾
	Zylinder	410 21)	4201)	316/316L	410 21)	4201)	316/316L	316/316L

¹⁾ wärmebehandelt

²⁾ auch mit Dichtkante stellitiert

 $^{^{\}scriptscriptstyle{(3)}}$ Kegel aus Stellite® 6 (bis Sitzbohrung Ø \leq 55 mm) verfügbar

⁴⁾ Führungsfläche hart chromatiert

⁵⁾ bei stellitierter Dichtkante auch Führungsfläche stellitiert

 $^{^{\}mbox{\tiny 6)}}$ bei T >932 °F (>500 °C) aus Werkstoff N06625

⁷⁾ nur bei Ausführung mit Cage-Garnitur

Balgbeständigkeit

SAMSON hat die Lebensdauer von Metallbälgen in Abhängigkeit vom Werkstoff für Voll- und Teilhübe rechnerisch ermittelt. Diese Werte können die Ermittlung von Instandhaltungsintervallen unterstützen. Je nach Betriebsbedingungen (insbesondere Druck und Temperatur des Mediums) können die individuellen betrieblichen Anwendungen abweichende Instandhaltungsintervalle erforderlich machen.

Tabelle 3: Lastspielzahlen Metallbälge

				Nenndruck Cla	ss 600/PN 100	·
			Werkst	off 1.4571	Werkst	off 2.4819
Nenn	weite	Hub		Lastspielz	ahl bei	
NPS	DN	mm	Vollhüben	Teilhüben (40 % vom Vollhub)	Vollhüben	Teilhüben (40 % vom Vollhub)
		15	200.000	>100 Mio.	45.000	800.000
1	25	19	50.000	100 Mio.	25.000	400.000
		26	8.000	1 Mio.	9.000	180.000
		15	450.000	>1 Mio.	120.000	10 Mio.
2	50	19	150.000	>1 Mio.	60.000	700.000
		30	11.000	1 Mio.	14.000	20.000
		15	1 Mio.	>60 Mio.	150.000	>280.000
3	80	30	40.000	60 Mio.	20.000	280.000
		38	10.000	1 Mio.	9.000	150.000
		15	1 Mio.	>60 Mio.	150.000	>280.000
4	100	30	40.000	60 Mio.	20.000	280.000
		38	10.000	1 Mio.	9.000	150.000

C_V- und K_{Vs}-Werte für Ausführung mit Kegel¹⁾ • gleichprozentig oder linear

Kenndaten für die Durchflussberechnung nach DIN IEC 60534-2-1 und DIN IEC 60534-2-2: F_L = 0,95, x_T = 0,75

Tabelle 4: Übersicht Ausführung mit geschraubtem Sitz (glp oder lin)

Cv		0,3	0,5	0,75	1,1	2	3	5	8	15	24	37	54	85	128	220	315	465	810
K _{vs}		0,26	0,43	0,65	0,95	1,7	2,6	4,3	6,9	13	21	32	47	74	110	190	273	400	700
C _v -1			-	-	-	1,8	2,7	4,5	8,2	14	22	34	49	76	116	200	284	420	730
K _{vs} -1			-	-	-	1,6	2,3	3,9	6,2	12	19	29	42	66	100	171	245	363	630
SB	mm	4/8	6/8	6/8	6/8	12	12	24	24	27	33	42	55	70	85	110	130	170	228
Hub	mm	15	15	15	15	15	15	15	15	15	19	19	30	38	38	60	60	60	90

Tabelle 5: Ausführungen ohne Strömungsteiler (geschraubter Sitz)

C _v		0,3	0,5	0,75	1,1	2	3	5	8	15	24	37	54	85	128	220	315	465	810
K _{vs}		0,26	0,43	0,65	0,95	1,7	2,6	4,3	6,9	13	21	32	47	74	110	190	273	400	700
NPS	DN																		
1/2	15	•	•	•	•	•	•	•											
1	25			•	•	•	•	•	•	•									
11/2	40					•	•	•	•	•	•	•							
2	50									•	•	•	•						
3	80											•	•	•	•				
4	100												•	•	•	•			
6	150														•	•	•	•	
8	200															•	•	•	•

Tabelle 6: Ausführungen mit Strömungsteiler ST1 (C_V-1/K_{VS}-1) (geschraubter Sitz)

C _v -1		-	-	-	-	1,8	2,7	4,5	8,2	14	22	34	49	76	116	200	284	420	730
K _{vs} -1		-	-	-	-	1,6	2,3	3,9	6,2	12	19	29	42	66	100	171	245	363	630
NPS	DN																		
1/2	15					•	•	•											
1	25					•	•	•	•	•									
1½	40					•	•	•	•	•	•	•							
2	50									•	•	•	•						
3	80											•	•	•	•				
4	100												•	•	•	•			
6	150														•	•	•	•	
8	200															•	•	•	•

Parabolkegel (Standard) • Werte für andere Kegelausführungen auf Anfrage • Lochkegel vgl. Typenblatt ► T 8086

Tabelle 7: Übersicht Ausführung mit geklemmtem Sitz (glp oder lin)

C _v		0,3	0,5	0,75	1,1	2	3	4,5	5	8	14	15	24	34	37	49	54	85	116	128	200	220	315	420	465	730	810
K _{vs}		0,26	0,43	0,65	0,95	1,7	2,6	3,9	4,3	6,9	12	13	21	29	32	42	47	74	100	110	171	190	273	363	400	630	700
SB	mm	4/8	6/8	6/8	6/8	12	12	24	24	24	24	27	33	42	42	55	55	70	85	85	110	110	130	170	170	228	228
Hub	mm	15	15	15	15	15	15	15	15	15	15	15	19	19	19	30	30	38	38	38	60	60	60	60	60	90	90

Tabelle 8: Ausführungen ohne Strömungsteiler (geklemmter Sitz)

Cv		0,3	0,5	0,75	1,1	2	3	4,5	5	8	14	15	24	34	37	49	54	85	116	128	200	220	315	420	465	730	810
K _{vs}		0,26	0,43	0,65	0,95	1,7	2,6	3,9	4,3	6,9	12	13	21	29	32	42	47	74	100	110	171	190	273	363	400	630	700
NPS	DN																										
1/2	15	•	•	•	•	•	•	•																			
1	25			•	•	•	•		•	•	•																
1½	40					•	•		•	•		•	•	•													
2	50											•	•		•	•											
3	80														•		•	•	•								
4	100																•	•		•	•						
6	150																			•		•	•	•			
8	200																					•	•		•	•	

$C_{v^{-}}$ und K_{vs} -Werte für Ausführung mit Käfig ullet gleichprozentig oder linear

 Tabelle 9: Übersicht Ausführung mit Käfig (glp oder lin)

			Kä	fig mit v	ollem [Durchflu	ıss			Käfig	mit red	uzierte	m Durch	ıfluss	
C _v		17	37	60	136	225	475	835	11	24	42	95	146	335	600
K _{vs}		14,5	32	52	118	195	410	720	9,4	21	36	82	126	290	520
Garnitur		1 ⁵ / ₁₆ "	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"	1 ⁵ / ₁₆ "	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"
Hub	mm	19	19	30	38	60	75	90	19	19	30	38	60	75	90

Tabelle 10: Ausführungen mit Käfig • Durchflussrichtung FTO (Flow to open)

			Kä	fig mit	vollem	Durchfl	uss			Käfig	mit red	luzierte	m Durcl	nfluss	
Cv		17	37	60	136	225	475	835	11	24	42	95	146	335	600
K _{vs}		14,5	32	52	118	195	410	720	9,4	21	36	82	126	290	520
NPS	DN			'											
1	25	•							•						
1½	40		•							•					
2	50			•							•				
3	80				•							•			
4	100					•							•		
6	150						•							•	
8	200							•							

C_{v^-} und K_{vs^-} Werte für Ausführung mit Strömungsteilerkäfig FDC1 • gleichprozentig, linear oder modifiziert-linear

 Tabelle 11: Übersicht Ausführung mit Käfig FDC1 (glp)

			Kä	fig mit v	vollem I	Durchflu	ıss			Käfig	mit red	uzierte	m Durcl	ıfluss	
C _v -FDC1		14	30	49	110	178	382	676	10	20	34	76	123	266	475
K _{vs} -FDC1		12	26	42	95	154	330	585	8,5	17	29	66	106	230	410
Garnitur		15/16"	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"	15/16"	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"
SB	mm	31,34	45,63	56,74	86,98	112,38	176,15	227	31,34	45,63	56,74	86,98	112,38	176,15	227
Käfig-Øi	mm	33,34	47,63	58,74	88,98	114,38	177,98	228,8	33,34	47,63	58,74	88,98	114,38	177,98	228,8
Hub	mm	19	19	30	38	60	75	90	19	19	30	38	60	75	90

Tabelle 12: Ausführungen mit Käfig FDC1 (C_{V} -FDC1/ K_{VS} -FDC1) • (glp)

			Kä	fig mit	vollem I	Durchfl	uss			Käfig	mit red	uzierte	m Durcl	nfluss	
C _v -FDC1		14	30	49	110	178	382	676	10	20	34	76	123	266	475
K _{vs} -FDC1		12	26	42	95	154	330	585	8,5	17	29	66	106	230	410
NPS	DN											,		,	
1	25	•							•						
1½	40		•							•					
2	50			•							•				
3	80				•							•			
4	100					•							•		
6	150						•							•	
8	200							•							•

 Tabelle 13: Übersicht Ausführung mit Käfig FDC1 (lin)

			Kä	fig mit v	vollem I	Durchflu	ıss		Käfig mit reduziertem Durchfluss							
C _v -FDC1	C _V -FDC1 15 34 54 123 200 432 76							760	11	22	37	85	136	300	526	
K _{vs} -FDC1		13	29	47	106	171	370	650	9,4	19	32	74	118	260	455	
Garnitur		15/16"	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"	15/16"	1 ⁷ / ₈ "	25/16"	3½"	4½"	7"	9"	
SB	mm	31,34	45,63	56,74	86,98	112,38	176,15	227	31,34	45,63	56,74	86,98	112,38	176,15	227	
Käfig-Øi	mm	33,34	47,63	58,74	88,98	114,38	177,98	228,8	33,34	47,63	58,74	88,98	114,38	177,98	228,8	
Hub	mm	19	19	30	38	60	75	90	19	19	30	38	60	75	90	

Tabelle 14: Ausführungen mit Käfig FDC1 (C_V-FDC1/K_{VS}-FDC1) • (lin)

			Kä	ifig mit	vollem I	Durchfl	uss		Käfig mit reduziertem Durchfluss							
C _v -FDC1		15	34	54	123	200	432	760	11	22	37	85	136	300	526	
K _{vs} -FDC1		13	29	47	106	171	370	650	9,4	19	32	74	118	260	455	
NPS	DN											,			,	
1	25	•							•							
1½	40		•							•						
2	50			•							•					
3	80				•							•				
4	100					•							•			
6	150						•							•		
8	200							•								

 Tabelle 15: Übersicht Ausführung mit Käfig FDC1 (mod.-lin)

C _v -FDC1		17	37	60	136	225	475	835
K _{vs} -FDC1		14,5	32	52	118	195	410	720
Garnitur		1 ⁵ / ₁₆ "	1 ⁷ / ₈ "	2 ⁵ / ₁₆ "	3½"	41/2"	7"	9"
SB	mm	31,34	45,63	56,74	86,98	112,38	176,15	227
Käfig-Øi	mm	33,34	47,63	58,74	88,98	114,38	177,98	228,8
Hub	mm	19	19	30	38	60	75	90

Tabelle 16: Ausführungen mit Käfig FDC1 (C_V-FDC1/K_{VS}-FDC1) • (mod.-lin)

C _v -FDC1		17	37	60	136	225	475	835
K _{vs} -FDC1		14,5	32	52	118	195	410	720
NPS	DN							
1	25	•						
1½	40		•					
2	50			•				
3	80				•			
4	100					•		
6	150						•	
8	200							•

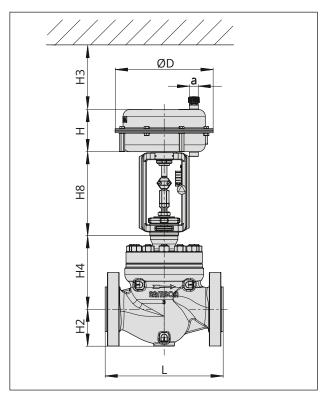
Tabelle 17: Maße in inch und mm für Stellventil SMS MG-1 und SMS MG-7

Ventil		NPS	1/2	1	11/2	2	3	4	6	8
	CI 150	in	7,25	7,25	8,75	10	11,75	13,88	17,75	21,38
	CI 150 –	mm	184	184	222	254	298	352	451	543
	CI 200	in	7,5	7,75	9,25	10,5	12,5	14,5	18,62	22,38
Länge L Flangeb DF	CI 300	mm	190	197	235	267	318	368	473	568
Länge L Flansch RF	CI 600	in	8	8,25	9,88	11,25	13,25	15,5	20	24
	C1 600 =	mm	203	210	251	286	337	394	508	610
	CI 900 -	in	11,5	11,5	13,12	14,75	17,38	20,12	28,12	-
	CI 900 -	mm	292	292	333	375	441	511	714	-
	CI 150 –	in	7,25	7,25	9,25	10,5	12,25	14,38	18,25	21,88
	Ci 130	mm	184	197	235	267	311	365	464	556
	CI 300 -	in	7,94	8,25	9,75	11,12	13,12	15,12	19,25	23
Länge L Flansch RTJ	C1 300	mm	201	210	248	283	334	384	489	584
Lange L Flansch Kij	CI 600 -	in	7,94	8,25	9,88	11,37	13,37	15,62	20,12	24,12
	C1 000	mm	201	210	251	289	340	397	511	613
	CI 900 -	in	11,5	11,5	13,12	14,87	17,5	20,24	28,24	_
	C1 900	mm	292	292	333	378	444	514	717	-
	CI 150600	in	8	8,25	9,88	11,25	13,25	15,5	20	24
Länge L Anschwei-	Ci 130000	mm	203	210	251	286	337	394	508	610
ßenden	CI 900	in	11	11	13	14,75	18,12	20,87	30,25	-
	C1 300	mm	279	279	330	375	460	530	768	-
Höhe H4 Normalau	sführung	in	6,3	6,3	6,3	7,32	8,27	9,61	12,56	15,94
THORE THE INDITIONAL	Siulii ulig	mm	160	160	160	186	210	244	319	405
Höhe H4 mit Isolier	tail	in	8,86	8,86	10,04	11,42	12,4	14,76	20,87	24,02
Thome 114 mile isomer	ten	mm	225	225	255	290	315	375	530	610
Höhe H4 mit Balgte	il	in	15,98	15,98	15,71	18,27	22,05	22,64	33,46	a. A.
Tione 114 mit baigte		mm	406	406	399	464	560	575	850	a. A.
	350 cm ²	in	11,26	11,26	11,26	11,26	11,26	11,26	19,8	_
	330 CIII	mm	286	286	286	286	286	286	503	-
	350v2 cm ²	in	11,26	11,26	11,26	11,26	11,26	11,26	19,8	_
	33002 CIII	mm	286	286	286	286	286	286	503	_
	355v2 cm ² –	in	11,26	11,26	11,26	11,26	11,26	11,26	19,8	_
	33342 (111	mm	286	286	286	286	286	286	503	-
	750 cm ²	in	11,26	11,26	11,26	11,26	11,26	11,26	19,8	-
	750 cm	mm	286	286	286	286	286	286	503	-
H8 bei Antrieb	1000 cm ²	in	13,43	13,43	13,43	13,43	13,43	13,43	19,8	19,8
THO BETTATICIES	1000 CIII	mm	341	341	341	341	341	341	503	503
	1400-60 cm ²	in	13,43	13,43	13,43	13,43	13,43	13,43	19,8	19,8
	1-100 00 0111	mm	341	341	341	341	341	341	503	503
	1400-120 cm ²	in	_	_	-	20,71	20,71	20,71	23,15	23,15
	1.00 120 (111	mm	-	_	-	526	526	526	588	588
	2800 cm ²	in	_	-	_	20,71	20,71	20,71	23,15	23,15
	2000 (111	mm	-	-	-	526	526	526	588	588
	2x 2800 cm ²	in	_	_	-	20,71	20,71	20,71	23,15	23,15
	2X 2000 CIII	mm	-	-	-	526	526	526	588	588

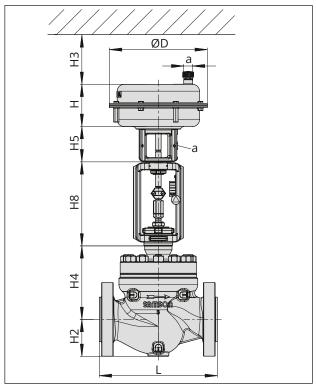
Ventil		NPS	1/2	1	1½	2	3	4	6	8
	CI 150300	in	1,73	2	2,44	2,97	4,15	5,47	7,28	8,46
	Ci 130300	mm	44	51	62	75,5	105,5	139	185	215
H2 ¹⁾	CI 600	in	1,73	2	2,44	2,97	4,15	5,59	7,28	8,46
112"		mm	44	51	62	75,5	105,5	142	185	215
	CI 900		1,73	2,24	2,44	3,05	4,19	5,98	7,83	8,46
			44	57	62	77,5	106,5	152	199	215

Das Maß H2 beschreibt den Abstand von der Mitte des Strömungskanals bis zur Unterseite des Gehäusebodens. Das Maß bis zur Unterkante des Anschlussflansches kann davon abweichen und größer oder kleiner sein. Flansch-Normen vgl. Tab. 1.

Tabelle 18: Weitere Maße¹⁾ in Kombination mit pneumatischem Antrieb Typ 3271 oder Typ 3277


Antriebsflä	che	cm²	350	350v2	355v2	750v2	1000	1400-60	1400-120	2800	2 x 2800
Membran-Ø	D	in	11,02	11,02	11,02	15,51	18,19	20,87	21,02	30,32	30,32
Membran-Ø	D	mm	280	280	280	394	462	530	534	770	770
H ²⁾	Typ 3271	in	3,23	3,62	5,16	9,29	15,87	13,27	23,54	28,07	47,76
H ²⁾	Typ 3271	mm	82	92	131	236	403	337	598	713	1213
H ²⁾	Typ 3277	in	3,23	3,23	4,76	9,29	-	-	-	-	-
H ²⁾	Typ 3277	mm	82	82	121	236	-	-	-	-	-
H3 ³⁾		in	4,33	4,33	4,33	7,48	24,02	24,02	25,59	25,59	25,59
H3 ³⁾		mm	110	110	110	190	610	610	650	650	650
H5	Typ 3277	in	3,98	3,98	3,98	3,98	-	-	-	-	-
H5	Typ 3277	mm	101	101	101	101	-	-	-	-	-
Gewinde	Typ 3271		M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	M60 x 1,5	M60 x 1,5	M100 x 2	M100 x 2	M100 x 2
Gewinde	Тур 3277		M30 x 1,5	M30 x 1,5	M30 x 1,5	M30 x 1,5	-	-	-	-	-
а	Typ 3271		G % (% NPT)	G % (% NPT)	G % (% NPT)	G % (% NPT)	G ¾ (¾ NPT)	G ¾ (¾ NPT)	G 1 (1 NPT)	G 1 (1 NPT)	G 1 (1 NPT)
a2	Typ 3277		G ¾	G %	G %	G %	-	-	-	-	-

Die aufgeführten Maße sind theoretisch ermittelte, maximale Konstruktionswerte einer spezifischen Standardvariante und bilden nicht jede mögliche Einsatzsituation des Geräts ab. Die tatsächlichen Werte einzelner Geräte können konfigurationsabhängig und anwendungsspezifisch variieren.


Höhe inkl. Hebeöse bzw. Innengewinde und Ringschraube nach DIN 580. Höhe des Anschlagwirbels kann abweichen. Antriebe bis 355v2 cm² ohne Hebeöse bzw. Innengewinde.

³⁾ Minimaler freier Abstand für Ausbau des Antriebs

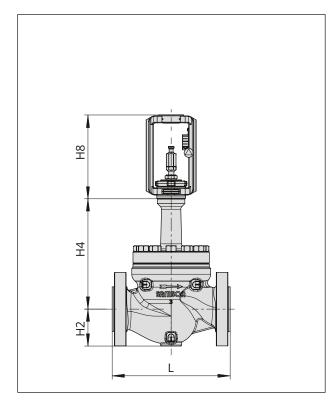

Maßbilder

Bild 5: Stellventil SMS MG-1: Ventil Typ 251GR mit pneumatischem Antrieb Typ 3271

Bild 6: Stellventil SMS MG-7: Ventil Typ 251GR mit pneumatischem Antrieb Typ 3277

Bild 7: Ventil Typ 251GR in Ausführung mit Isolierteil

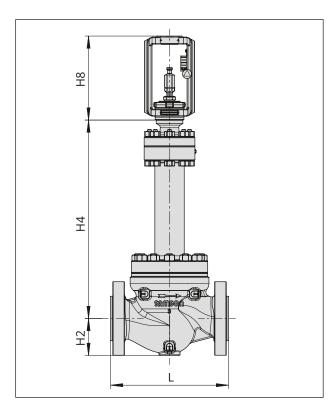


Bild 8: Ventil Typ 251GR mit Balgteil

Tabelle 19: Gewichte in lbs und kg für Ventil Typ 251GR mit Flanschen RF nach ASME B16.5

Ventil		NPS	1/2	1	11/2	2	3	4	6	8
Normalausfü	hrung (S	tandardo	berteil)				'		,	,
	CL 150	ca. lbs	20	29	37	64	101	148	298	511
	Cl 150	ca. kg	9	13	17	29	46	67	135	232
	CI 300	ca. lbs	22	33	46	68	112	174	355	589
Ventil ¹⁾ ohne	CI 300	ca. kg	10	15	21	31	51	79	161	267
Antrieb	CI 600	ca. lbs	22	33	49	75	128	225	470	820
	CI 600	ca. kg	10	15	22	34	58	102	213	372
	CI 900	ca. lbs	33	46	66	119	194	298	681	-
	CI 900	ca. kg	15	21	30	54	88	135	309	-
Ausführung i	nit Isolie	rteil		,						,
	Cl 150	ca. lbs	24	33	44	68	115	168	355	589
	CI 150	ca. kg	11	15	20	31	52	76	161	267
	CI 300	ca. lbs	24	35	51	75	128	196	417	672
Ventil ¹⁾ ohne	CI 300	ca. kg	11	16	23	34	58	89	189	305
Antrieb	CI 600	ca. lbs	26	37	53	82	132	231	500	851
	C1 000	ca. kg	12	17	24	37	60	105	227	386
	CI 900	ca. lbs	37	51	71	123	198	304	712	-
	CI 900	ca. kg	17	23	32	56	90	138	323	_
Ausführung i	nit Balgt	eil								
	Cl 150	ca. lbs	-	29	37	60	93	146	282	467
	CI 150	ca. kg	_	13	17	27	42	66	128	212
	CI 300	ca. lbs	-	33	44	64	106	174	346	551
Ventil ¹⁾ ohne	Ci 300	ca. kg	-	15	20	29	48	79	157	250
Antrieb	CI 600	ca. lbs	-	35	49	71	112	201	414	688
		ca. kg	-	16	22	32	51	91	188	312
	CI 900	ca. lbs	-	-	-	_	_	_	_	-
	C1 900	ca. kg	-	_	_	_	_	_	_	_

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

Tabelle 20: *Gewichte*¹⁾ *pneumatische Antriebe Typ 3271 und Typ 3277*

	•										Ì
Antrieb Typ	Antriebsfläch	ne cm²	350	350v2	355v2	750v2	1000	1400-60	1400-120	2800	2 x 2800
3271	ohne Handverstel- lung	lbs	18	26	33	79	176	154	386	992	2095
3271	ohne Handverstel- lung	kg	8	11,5	15	36	80	70	175	450	950
3271	mit Handverstel- lung	lbs	29	37	44	90	397	386	661 ²⁾ / 937 ³⁾	1268 ²⁾ / 1544 ³⁾	a. A.
3271	mit Handverstel- lung	kg	13	16,5	20	41	180	175	300 ²⁾ / 425 ³⁾	575 ²⁾ /700 ³⁾	a. A.
3277	ohne Handverstel- lung	lbs	27	33	42	89	-	_	-	-	-
3277	ohne Handverstel- lung	kg	12	15	19	40	_	_	-	-	-

Antrieb Typ	Antriebsfläche cm²		350	350v2	355v2	750v2	1000	1400-60	1400-120	2800	2 x 2800
3277	mit Handverstel- lung	lbs	38	44	53	100	_	_	_	-	-
3277	mit Handverstel- lung	kg	17	20	24	45	_	-	_	-	-

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Anzahl der Federn usw.) abweichen.

²⁾ Seitliches Handrad bis 80 mm Hub

³⁾ Seitliches Handrad über 80 mm Hub

Auswahl und Auslegung des Ventils

- 1. Berechnung des C_V-Werts nach DIN EN 60534-1
- 2. Auswahl von Nennweite NPS und C_v-Wert
- 3. Berechnung des zulässigen Differenzdrucks Δp auf Anfrage
- 4. Auswahl des Gehäusewerkstoffs nach Tab. 1 und Tab. 2 sowie nach den Druck-Temperatur-Diagrammen im Übersichtsblatt ► T 8000-2
- 5. Zusatzausstattungen nach Tab. 1 und Tab. 2

Bestelltext

Folgende Angaben sind bei der Bestellung erforderlich:

Nennweite NPS ... Nenndruck Class ... Gehäusewerk- vgl. Tab. 2

stoff

Oberteil Standard, Isolier- oder Balgteil Anschlussart Flansche oder Anschweißenden

Kegel/Kolben normal/druckentlastet

weich dichtend, metallisch dichtend oder metallisch für erhöhte

Anforderungen

Kennlinie gleichprozentig, linear, mod.-line-

ar oder Auf/Zu

Antrieb Typ 3271 oder Typ 3277 (vgl.

Typenblätter ► T 8310-1, ► T 8310-2 und ► T 8310-3) Ventil ZU oder Ventil AUF

Sicherheitsstel-

lung

Durchflussmedi- Dichte in lb/cu.ft oder kg/m³ und

um Temperatur in °F oder °C

Durchfluss in lbs/h oder kg/h oder cu.ft/min

oder m³/h im Norm- oder Be-

triebszustand

Druck p_1 und p_2 in bar oder psi (Abso-

lutdruck p_{abs}) jeweils bei minimalem, normalem und maximalem

Durchfluss

RFID-Transpon-

lar

ja/nein

Anbaugeräte Stellungsregler und/oder Grenz-

signalgeber

Zugehöriges Übersichtsblatt Zugehörige Typenblätter für pneumatische Antriebe Zugehörige Einbau- und Bedie-

► T 8310-1 bis ► T 8310-3 ► EB 8004-GR

► T 8000-X

nungsanleitung