TYPENBLATT

T 3136

Kombinierte Regler

Durchgangsventil Nennweite DN 15 · Nenndruck PN 10 · Volumenstrom-Sollwertbereiche 0,3 bis 1 m³/h oder 0,1 bis 0,5 m³/h bei Wirkdruck 0,2 bar · für aufbereitetes Wasser bis 110 °C, nicht brennbare Gase bis 80 °C

Druckunabhängiges Regelventil (PICV) zur Volumenstromregelung in Wärmeversorgungsanlagen kombiniert mit einem elektrischen Antrieb zum Aufschalten des Stellsignals einer elektrischen Regeleinrichtung.

Besonders geeignet für Nahwärme und große Heiznetze.

Das Ventil schließt bei steigendem Volumenstrom und Ausgangssignal der elektrischen Regeleinrichtung.

Die kombinierten Regler bestehen aus einem Durchgangsventil mit integriertem Membranantrieb und zusätzlich einem elektrischen Antrieb Typ 5857 ¹⁾.

Charakteristische Merkmale

- Wartungsarmer, mediumsgesteuerter P-Regler ohne Hilfsenergie
- Einsitz-Durchgangsventil
- Kompakte Bauweise
- Vom Netzdifferenzdruck unabhängige Regelgüte, beispielsweise bei der Temperaturregelung mit einer witterungsgeführten Regeleinrichtung
- Geeignet für aufbereitetes Kreislaufwasser

Ausführungen

Druckunabhängiges Regelventil Typ 2488 N/5857 ¹⁾: Ventil Typ 2488 N mit beidseitigem Anschlussgewinde nach ISO 228-1 – G ³/₄ B zum Anschluss von Anschraubenden G ¹/₂ oder Anschweißenden · mit elektrischem Antrieb Typ 5857

Zubehör

- Anschraubenden G ½
- Anschweißenden
- Isolierzwischenstück

Bild 1: Druckunabhängiges Regelventil Typ 2488 N/5857

SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt am Main Telefon: +49 69 4009-0 · Telefax: +49 69 4009-1507

E-Mail: samson@samsongroup.com · Internet: www.samsongroup.com

Alternativ: TROVIS 5757-3/5757-7

Wirkungsweise

Das Ventil (1) wird entsprechend der Pfeilrichtung auf dem Gehäuse durchströmt. Dabei beeinflussen die von der Blende (11) und dem Kegel (3) freigegebenen Flächen den Volumenstrom.

Die Volumenstromregelung geschieht entweder über den angeschlossenen elektrischen Antrieb oder den Membranantrieb (6). Der elektrische Antrieb reagiert auf das Stellsignal einer elektronischen Regeleinrichtung und verschiebt die Blendenstange (12). Dadurch verändert sich der Durchflussquerschnitt unter der Blende (11) und damit der Volumenstrom.

Die stufenlos verstellbare Blende (11) ist über dem Sitz (2) als Wirkdruckgeber und Sollwertsteller eingebaut. Mit der Stellschraube (13) wird die Blendenstellung beeinflusst und der Durchflussquerschnitt – und damit auch der Volumenstrom – begrenzt.

Unterhalb des Sitzes befindet sich der Kegel (3), der direkt mit dem Membranantrieb (6) gekoppelt ist. Die Stellmembran (9) bestimmt zusammen mit der Sollwertfeder (5) den Wirkdruck von 0,2 bar über der Blende.

An der Blende wird vom strömenden Medium ein Druckabfall Δp_{Wirk} erzeugt. Dieser Druckabfall führt über die Steuerleitung (7) und die interne Bohrung im Kegel und in der Kegelstange auf die Stellmembran (9) und wird in eine Stellkraft umgeformt. Der Membranantrieb regelt Δp_{Wirk} an der Blende und den durch die Blendenstellung bestimmten Volumenstrom, indem er für ein Kräftegleichgewicht zwischen der Sollwertfederkraft und der Antriebskraft sorgt. Der maximale Volumenstrom wird durch die über die Stellschraube (13) bestimmte maximale Blendenöffnung eingestellt.

Wenn zur Anlagenversorgung ein kleinerer Volumenstrom benötigt wird als als Maximum eingestellt wurde, positioniert der elektrische Antrieb die Blende entsprechend.

Da auch bei wechselndem Netzdifferenzdruck der Druckabfall an der Blende konstant gehalten wird, hat die Armatur – bezogen auf die elektrisch betätigte Blende – die Ventilautorität von 1. Somit wird beispielsweise die Regelgüte einer witterungsabhängigen Temperaturregelung nicht vom Netzdifferenzdruck beeinflusst.

Einbau

- Einbau der Regler vorzugsweise in waagerecht verlaufende Rohrleitungen.
- Durchflussrichtung entsprechend dem Pfeil auf dem Gehäuse
- Der elektrische Antrieb muss sich oberhalb des Ventilgehäuses befinden.
- Vor dem Zusammenbau von Antrieb und Ventil: Antriebsstange einfahren.
- Bei einer Isolation des Reglers dürfen der Antrieb und die Überwurfmutter nicht mit isoliert werden.
- Zulässige Temperaturbereiche beachten.
- Falls die zulässige Temperatur an der Antriebsstange überschritten wird: Isolierzwischenstück einsetzen.

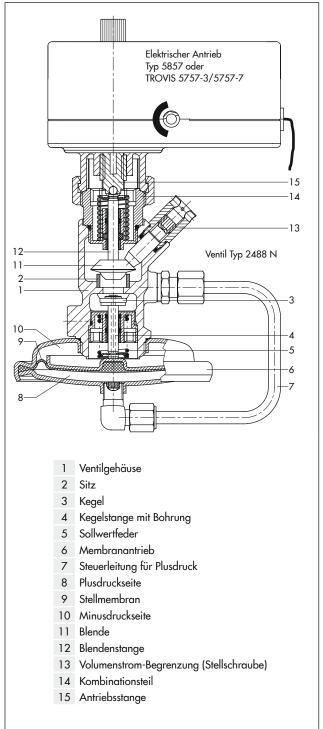


Bild 2: Wirkungsweise · Ansicht in Strömungsrichtung

Differenzdruck am Ventil

Der minimal erforderliche Differenzdruck Δp_{min} über dem Ventil errechnet sich aus:

$$\Delta p_{min} = \Delta p_{Wirk} + (\dot{V}/K_{VS})^2$$

 Δp_{min} Mindest-Differenzdruck über dem Ventil in bar

Δ**p**_{Wirk} Wirkdruck; speziell für die Volumenstrommessung erzeugter Druckabfall an der Drosselstelle (Blende) in bar

Ÿ eingestellter Volumenstrom (Durchfluss) in m³/h

K_{vs} Durchflusskennwert des Ventils in m³/h

2 T 3136

Tabelle 1: Technische Daten

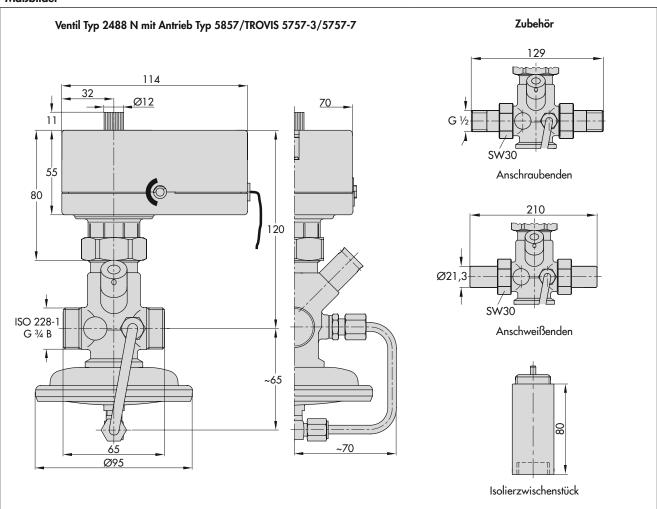
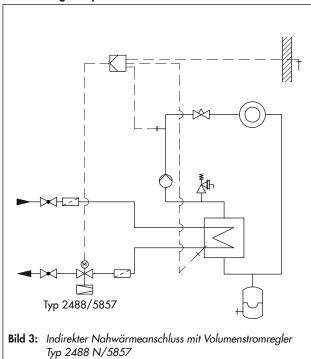

Ventil Typ 2488 N		
Nennweite		DN 15
Anschluss		ISO 228-1 – G ¾ B
K _{VS} -Wert	Standard	2,5
	Sonderausführung	1,0
Nenndruck		PN 10
Max. zul. Differenzdruck Δp		4 bar
Max. zul. Temperatur	aufbereitetes Wasser	110 °C
	nicht brennbare Gase	80 °C
z-Wert		0,43
Wirkdruck		0,2 bar
Konformität		CE
Volumenstrom-Sollwertbereich/Begrenzung für Wasser bei Wirkdruck 0,2 bar	Standard	0,3 bis 1 m³/h
	Sonderausführung	0,1 bis 0,5 m³/h
Elektrischer Antrieb Typ 5857		
Elektrischer Anschluss	Versorgungsspannung	230 V/24 V±10 %, 50 Hz
Leistungsaufnahme		ca. 3 VA
Nennhub		6 mm
Stellzeit pro Nennhub		20 s
Nennschubkraft		300 N
Max. zul. Umgebungstemperaturbereich		0 bis 50 °C
Max. zul. Umgebungstemperaturbereich an der Antriebsstange		0 bis 110 °C
Lagertemperaturbereich		−20 bis +70 °C
Schutzart (stehende Montage) 1)		IP 42
Störfestigkeit		EN 61000-6-2
Störaussendung		EN 61000-6-3
Konformität		C€
Gewicht		ca. 0,7 kg
Zusätzliche elektrische Ausrüstung 2)		
Stellungsregler (nur bei 24 V AC)		
Eingangssignal		0(2) bis 10 V
Stellungs-Rückmeldung		0 bis 10 V

Tabelle 2: Werkstoffe · Werkstoff-Nr. nach DIN EN


Ventil Typ 2488 N		
Ventilgehäuse	Rotguss CC499K (Rg 5)	
Kegel	1.4301 mit EPDM-Weichdichtung	
Blende	Entzinkungsfreies Messing	
Kegelstange	1.4305	
Sitz	Rotguss CC499K (Rg 5)	
Ventilfeder	1.4310 K	
Membran	EPDM ohne Gewebe	
Anschraubende	CW617N (Messing)	
Anschweißende	1.0037	
Isolierzwischenstück	1.4306, CW617N (Messing), PTFE, EPDM, FKM	
Elektrischer Antrieb Typ 5857		
Gehäuse	Kunststoff (PPO)	
Überwurfmutter	CW617N (Messing)	

T 3136 3

Antrieb über dem Ventil nur bei TROVIS 5757-3

Anwendungsbeispiel

Bestelltext

Druckunabhängiges Regelventil (PICV)

Typ 2488 N/5857/5757-3/5757-7

- mit Ventil Typ 2488 N und elektrischem Antrieb Typ 5857 oder elektrischem Prozessregelantrieb TROVIS 5757-3 oder TROVIS 5757-7
- Volumenstrom-Sollwertbereich bei Wirkdruck 0,2 bar:
 - 0,3 bis 1,0 m³/h
 - 0,1 bis 0,5 m³/h (Sonderausführung)