TYPENBLATT

T 2134

Temperaturregler Typ 9 · Ausführung nach ANSI

Temperaturregler ohne Hilfsenergie · mit druckentlastetem ¹) Dreiwegeventil · Flanschanschluss

Anwendung

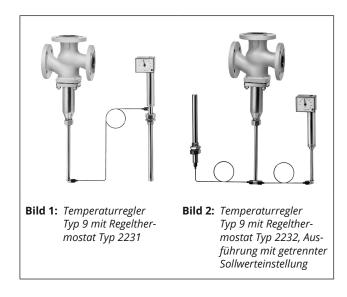
Temperaturregler mit Misch- oder Verteilventil für Anlagen, die mit Flüssigkeiten beheizt oder gekühlt werden \cdot Regelthermostate für Sollwerte von **15 bis 480 °F** \cdot Dreiwegeventile **NPS ½ bis 6** \cdot Nenndruck **Class 150 und 300** \cdot Temperaturen **bis 660 °F**

Hinweis

Temperaturregler (TR), Sicherheitstemperaturwächter (STW) und Sicherheitstemperaturbegrenzer (STB) geprüft nach DIN FN 14597 sind lieferbar

Die Geräte bestehen aus einem Dreiwegeventil und Regelthermostat mit Temperaturfühler, Sollwerteinstellung mit Übertemperatursicherung, Verbindungsrohr und Arbeitskörper.

Charakteristische Merkmale


- Wartungsarme P-Regler, keine Hilfsenergie erforderlich
- Weiter Sollwertbereich und bequeme Sollwerteinstellung.
- Dreiwegeventil mit Druckentlastung ¹⁾ durch einen korrosionsfesten Stahlbalg, wahlweise mit Kegelanordnung für Misch- oder Verteilbetrieb von Flüssigkeiten.
- Durchfluss im Querschnitt AB unabhängig von der Stellung der Ventilkegel.
- Ventilgehäuse wahlweise aus Stahlguss oder korrosionsfestem Stahlguss.
- Ausführungen mit Doppelanschluss und Handverstellung für Temperaturbegrenzer oder für Anbau eines zweiten Regelthermostaten. Einzelheiten vgl.
 T 2036.

Ausführungen

Temperaturregler mit Dreiwegeventil Typ 9 · Ventil Typ 2119 NPS ½ bis 1 nicht druckentlastet · NPS 1½ bis 6 druckentlastet · Class 150 und 300 · Regelthermostat Typ 2231 bis 2234

Dreiwegeventile wahlweise mit Kegelanordnung für Misch- oder Verteilbetrieb. Einzelheiten über die Anwendung der Thermostate vgl. Übersichtsblatt T 2010.

Typ 2119/2231 (Bild 1) · mit Ventil Typ 2119 und Regelthermostat Typ 2231 · für Flüssigkeiten und Dampf · Sollwerte von 15 bis 300 °F · Sollwerteinstellung am Fühler

Typ 2119/2232 (Bild 2) · mit Ventil Typ 2119 und Regelthermostat Typ 2232 · für Flüssigkeiten und Dampf · Sollwerte von 15 bis 480 °F · getrennte Sollwerteinstellung · mit Klemmbuchse für größere Eintauchtiefen

Typ 2119/2234 · mit Ventil Typ 2119 und Regelthermostat Typ 2234 für Flüssigkeiten, Luft und andere Gase · Sollwerte von 15 bis 480 °F · getrennte Sollwerteinstellung

Sonderausführung

- Verbindungsrohrlänge 33 oder 50 ft
- Fühler aus CrNiMo-Stahl
- Verbindungsrohr Cu-kunststoffummantelt
- Ventil komplett in korrosionsfester Ausführung (min. Werkstoff 1.4301)
- Ausführung nach DIN (vgl. ► T 2133)

SAMSON AKTIENGESELLSCHAFT · Weismüllerstraße 3 · 60314 Frankfurt am Main Telefon: +49 69 4009-0 · Telefax: +49 69 4009-1507 E-Mail: samson@samsongroup.com · Internet: www.samsongroup.com

¹⁾ NPS ½ bis 1 nicht druckentlastet

Wirkungsweise (vgl. Bild 3 und Bild 4)

Die Regler arbeiten nach dem Prinzip der Flüssigkeitsausdehnung. Temperaturfühler (11), Verbindungsrohr (8) und Arbeitskörper (7) sind mit einer Flüssigkeit gefüllt. Ausdehnung und Entspannung dieser Flüssigkeit verstellen in Abhängigkeit von der Temperatur den Arbeitskörper und infolgedessen die Kegelstange (5) des Ventils mit dem Kegel (3). Die Stellung des Kegels bestimmt den Durchfluss des Wärmeträgers über die zwischen Kegel (3) und Sitz (2) freigegebene Fläche. Der Temperatursollwert lässt sich mit einem Schlüssel (9) auf einen an der Skala (10) ablesbaren Wert einstellen. Bei den druckentlasteten Ventilen (NPS 1½ bis 6) wirkt der Druck im Anschluss B über eine Bohrung in der Kegelstange (5) auf die Außenseite und der Druck im Anschluss A auf die Innenseite des Entlastungsbalgs 1) (4.1). Dadurch werden die Kräfte an den Ventilkegeln (3) kompensiert.

Bei Mischventilen (vgl. Bild 3 mit Kegelanordnung I) werden die zu mischenden Medien bei A und B zugeführt. Der Gesamtstrom fließt bei AB ab. Der Durchfluss von A oder B nach AB ist von der freigegebenen Fläche zwischen den Sitzen (2) und den Kegeln (3) und damit von der Stellung der Kegelstange (5) abhängig. Bei steigender Temperatur wird Anschluss A geöffnet und Anschluss B geschlossen.

Bei Verteilventilen wird dagegen das Medium bei AB zugeführt und die Teilströme fließen bei A oder B ab. Der Durchfluss von AB nach A oder B ist von der Stellung der Kegelstange abhängig. Verteilventile weisen die Kegelanordnung II (vgl. Bild 4) auf. Dabei wird bei steigender Temperatur Anschluss A geschlossen und Anschluss B geöffnet.

Einbau

- Ventil

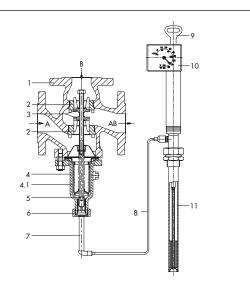
Der Thermostatanschluss (6) muss nach unten zeigen. Andere Einbaulagen auf Anfrage.

Die Durchflussrichtung entsprechend dem Einsatz als Verteil- oder Mischventil beachten.

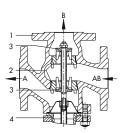
- Verbindungsrohr

Das Verbindungsrohr so verlegen, dass der zul. Umgebungstemperaturbereich nicht überschritten wird, keine Temperaturschwankungen auftreten und keine mechanischen Beschädigungen entstehen. Der kleinste mögliche Biegeradius beträgt 2".

- Temperaturfühler


Die Einbaulage des Temperaturfühlers ist beliebig. Er muss aber mit seiner gesamten Länge in das zu regelnde Medium eintauchen. Den Einbauort so auswählen, dass weder Überhitzungen noch merkliche Totzeiten auftreten.

Es ist nur die Kombination gleichartiger Werkstoffe zulässig, z. B. Wärmetauscher aus korrosionsfestem Stahl mit Tauchhülsen aus korrosionsfestem Stahl 1.4571.


- Tauchhülse

Typ 2231

Der Regelthermostatfühler ist mit und ohne Tauchhülse einsetzbar. Die Standardlänge der Tauchhülse beträgt 11.4".

Bild 3: Temperaturregler mit Dreiwegeventil Typ 9 (NPS 2) und Regelthermostat Typ 2231, Dreiwegeventil mit Kegelanordnung I, Pfeilrichtungen für Mischbetrieb

Bild 4: Dreiwegeventil Typ 9 mit Kegelanordnung II, Pfeilrichtungen für Verteilbetrieb

Dre	iwegeventil	Regelthermostat				
1	Ventilgehäuse	7	Arbeitskörper			
2	Sitz (austauschbar)	8	Verbindungsrohr			
3	Kegel	9	Schlüssel zur			
4	Unterteil (Balggehäuse)		Sollwerteinstellung			
4.1	Entlastungsbalg	10	Sollwertskala			
5	Kegelstange mit Feder	11	Temperaturfühler			
	Thermostatanschluss		(Stabfühler)			
6	(Anschlussnippel mit Überwurfverschraubung)					

Typ 2232

Der Regelthermostatfühler ist mit und ohne Tauchhülse einsetzbar. Die Standardlänge der Tauchhülse beträgt 9.3".

Bei größeren Tauchtiefen (bis max. 39" von SAMSON) kann die Ausführung mit Klemmbuchse genommen werden. Bauseits gestellte Tauchhülsen mit abweichenden Tauchtiefen können ebenso eingesetzt werden. Bei diesen Ausführungen wird die Tauchtiefe des Fühlers, abhängig von der Länge des Verbindungsrohrs, frei in der Tauchhülse gewählt.

Aus Sicherheitsgründen und aufgrund der fehlenden Fühlerabdichtung ist der Einsatz der Klemmbuchse nur mit Tauchhülse möglich bzw. erlaubt!

Typ 2234

Der Regelthermostatfühler ist nur ohne Tauchhülse einsetzbar. Die maximale Fühlerlänge beträgt 18.1".

2 T 2134

Die Ventile NPS ½ bis 1 sind ohne Druckentlastung ausgeführt.

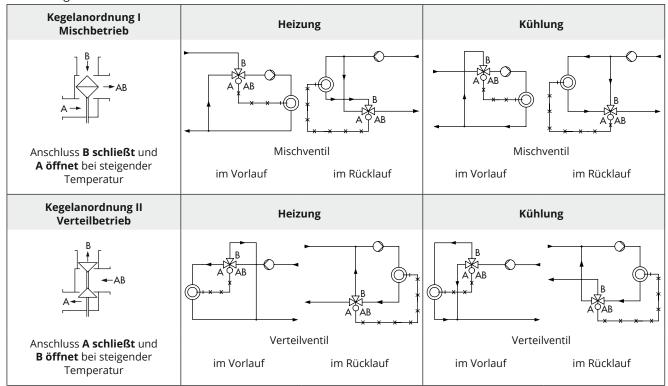
Tabelle 1: Technische Daten · Alle Drücke als Überdruck in psi. Die aufgeführten zulässigen Drücke und Differenzdrücke werden durch die Angaben im Druck-Temperatur-Diagramm und den Nenndruck eingeschränkt

Dreiwegeventil Ty	rp 2119										
Nenndruck	Class 150 und 300										
C _v -Werte und max	. zul. Differenzdrücke Δp in _l	osi									
Anschluss NPS			3/4	1	11/2	2	21/2	3	4	6	
Mischventil	CV-Wert in gal/min	5	7.5	9.4	23	37	60	94	145	230	
bei p in B > p in A	Δρ	145			230		145			120	
bei p in A > p in B Δp			75		50		45		30		
Verteilventil	CV-Wert in gal/min	5	7.5	9.4	23	37	50	77	117	185	
(bei AB nach A oder B) Δp		60			50		45 30			30	
Zulässige Temperatur des Ventils			430 °F/660 °F · vgl. Druck-Temperatur-Diagramm in ▶ T 2010								
Leckage-Klasse nach DIN EN 60534-4			metallisch dichtend: Leckrate I (≤0,05 % vom C _v -Wert)								
Konformität			C€								
Thermostat Typ 2231 bis 2234			Größe 150								
Sollwertbereich (Sollwertspanne jeweils 100 K)			15 bis 195 °F, 70 bis 250 °F oder 120 bis 300 °F · bei Typen 2232, 2234 auch 210 bis 390 °F, 300 bis 480 °F								
Zul. Umgebungstemperatur an der Sollwerteinstellung			-40 bis +140 °F								
Zul. Temperatur am Fühler			100 K über dem eingestellten Sollwert								
Zul. Druck am	Typ 2231 ¹⁾ · Typ 2232 ^{1) 2)}	ohne/mit Tauchhülse: Class 300 · mit Tauchhülse mit Flansch: Class 150/300									
Fühler	Typ 2234	ohne Tauchhülse: Class 300 · mit Flansch: auf Anfrage									
Verbindungsrohrlänge			16 ft (Sonderausführung: 33 oder 50 ft)								

andere Nenndruckstufen für Tauchhülse/Flansch auf Anfrage

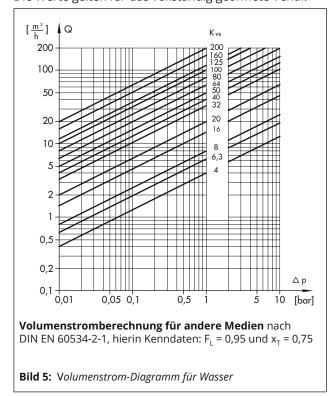
Tabelle 2: Werkstoffe · Werkstoff-Nr. nach DIN EN

Dreiwegeventil Ty	p 2119					
Nennweite		NPS ½ bis 6		NPS ½ bis 4		
Nenndruck		Class 150 und 300				
Gehäuse		Stahlguss A216WCC	korrosionsfester Stahlguss A351CF8M			
Sitz und Kegel		Stahl 1.4006 (1.4301 bei NPS 6)	1.4571			
Kegelstange/Feder		1.4301/1.4310				
Entlastungsbalg 1)		1.4571				
Balggehäuse		1.0425		1.4571		
Dichtring		Graphit mit metallischem Träger				
Verlängerungsstück	/Zwischenstück	Messing (Sonderausführung: korrosionsfester Stahl	1.4301)	1.4301		
Thermostat Typ 22	231, 2232 und 223	4				
Ausführung		Normalausführung	Sonderausführung			
Arbeitskörper		Messing, vernickelt				
	Typ 2231	Bronze	-			
Fühler	Typ 2232	Bronze	Cullinda Ti Chalal			
	Typ 2234	Kupfer	CrNiMoTi-Stahl			
Verbindungsrohr		Kupfer	Kupfer, kunststoffummantelt			
Tauchhülse						
Gewindeanschluss	Tauchrohr	Bronze · Stahl · Kupfer ²⁾		CUNIMAT: Stabl		
1 NPT	Gewindenippel	Messing · Stahl	- CrNiMoTi-Stahl			
Flanschanschluss	Tauchrohr	Stahl	Stahl			
FIGHISCHARISCHIUSS	Gewindenippel	Stahl	- CrNiMoTi-Stahl			


¹⁾ NPS ½ bis 1: ohne Entlastungsbalg.

T 2134 3

²⁾ Bei Anwendungen mit größeren Tauchtiefen (bis max. 23.6" von SAMSON) kann die Ausführung "Klemmbuchse" zum Einsatz kommen. Bauseits gestellte Tauchhülsen mit abweichenden Tauchtiefen können ebenso eingesetzt werden. Bei diesen Ausführungen kann die Tauchtiefe des Fühlers, innerhalb der Tauchhülse, frei gewählt werden.


²⁾ nur Class 125

Anordnung von Temperaturreglern mit Dreiwegeventilen (abhängig von der Kegelanordnung im Ventil) · Prinzipdarstellung

Volumenstrom-Diagramm für Wasser

Die Werte gelten für das vollständig geöffnete Ventil.

Typgeprüfte Sicherheitseinrichtungen

Register-Nr. auf Anfrage.

Es sind lieferbar:

Temperaturregler (TR) mit einem Thermostat Typ 2231, 2232 oder 2234 und einem Dreiwegeventil Typ 2119, NPS ½ bis 6, bei dem der max. Betriebsdruck den in den technischen Daten angegebenen max. zul. Differenzdruck Δp nicht überschreiten darf.

Fühler ohne Tauchhülse: einsetzbar bis 600 psi.

Fühler **mit Tauchhülse**: nur mit SAMSON-Ausführung 1 NPT, Bronze, Stahl und Edelstahl bis 600 psi, Kupfer bis 230 psi.

Einzelheiten über die Auswahl und Anwendung von typgeprüften Geräten in Übersichtsblatt ▶ T 2040.

Außerdem sind lieferbar:

Sicherheitstemperaturwächter (STW) und **Sicherheitstemperaturbegrenzer (STB)**. Einzelheiten in den Typenblättern ► T 2043 und ► T 2046.

4 T 2134

Abmessungen · Dreiwegeventil Typ 2119 mit Thermostat

Tabelle 3: *Maße in inch und Gewichte*

Dreiwe	egeventil Typ 2119	NPS	1/2	3/4	1	1½	2	21/2	3	4	5
l Baulänge L		Class 150		7.25		8.75	10	10.9	11.75	13.9	17.75
		Class 300	7.5	7.6	7.75	9.25	10.5	11.5	12.5	14.5	18.6
H2		Class 150	3.6 4.4		5	5.4	5.9	6.9	8.9		
		Class 300	3	.8	3.9	4.6	5.3	5.8	6.3	7.2	9.3
H1	bis 430 °F (ohne Verlängerungsstück)			9.25				12.2		14	19.3
П	bis 660 °F (mit Verlängerungsstück)				14.8			17.7		19.5	24.8
Н	bis 430 °F (ohne Verlänge	F (ohne Verlängerungsstück)		20.7			23.6		25.4	30.7	
1 1	bis 660 °F (mit Verlängeru	ıngsstück)	26.2					29	9.1	30.9	36.2
Gewicht (Gehäuse Class 125 1), ca. lb		13	15.5	17.5	33	46.5	68.5	75	110.5	231.5	
Thermostat Typ			2231 2232		2232			2234			
Tauchtiefe T		11.4 ²⁾ 9.25 ²⁾		9.25 ²⁾	5 ²⁾		18.1				
Gewicht, ca. lb			7		8.8		8.1				

^{1) +10%} für Class 300.

Zeitverhalten der Thermostate

Die Dynamik des Reglers wird im Wesentlichen vom Ansprechverhalten des Fühlers mit seiner charakteristischen Zeitkonstante geprägt.

Tabelle 4 zeigt die Zeitkonstanten von SAMSON-Thermostaten mit unterschiedlichen Funktionsprinzipien bei Messungen in Wasser.

Tabelle 4: Zeitverhalten der Thermostate von SAMSON

Funktions- prinzip	Regelthermostat	Zeitkonstante in s ohne mit				
	Тур	Tauchhülse				
	2231	70 s	120 s			
Flüssigkeits- ausdeh-	2232	65 s	110 s			
nung	2234	15 s	_1)			
	2213	70 s	120 s			
Adsorption	2212	_1)	40 s			

¹⁾ Nicht zulässig.

Zubehör

Tauchhülsen mit Gewinde- oder Flanschanschluss für Stabfühler Typ 2231 und 2232 · Gewindeanschluss 1 NPT, Class 300, aus Bronze/Stahl/CrNiMo-Stahl, Class 125 aus Kupfer · Flanschanschluss NPS 1½, Class 300, mit Tauchhülse aus CrNiMo-Stahl/Stahl.

Befestigungsteile für Typ 2234 · Trägerelemente für Wandmontage · Abdeckhaube für Thermostat Zum Schutz des Arbeitskörpers vor unzulässigen Betriebsbedingungen wird zwischen Ventil und Arbeitskörper ein **Verlängerungs-** oder ein **Zwischenstück** angeordnet.

Ein **Verlängerungsstück** ist für Temperaturen über 430 °F notwendig. Es wird standardmäßig ohne Abdichtung angeboten. Als Sonderausführung gibt es für NPS ½ bis 4 das Verlängerungsstück aus Edelstahl mit Balgabdichtung. Es wirkt zusätzlich wie ein Zwischenstück.

T 2134 5

²⁾ Größere Tauchtiefen auf Kundenwunsch.

Zwischenstück aus Messing (für Wasser, Dampf) oder CrNi-Stahl (für Wasser, Öl). Ein Zwischenstück ist dann einzusetzen, wenn eine Abdichtung zwischen Thermostat und Ventil gefordert wird. Ist die Buntmetallfreiheit aller medienberührenden Teile zu garantieren, müssen Zwischenstücke aus CrNi-Stahl eingesetzt werden. Des Weiteren verhindert ein Zwischenstück einen Mediumaustritt bei Thermostatwechsel.

Doppelanschluss Typ Do2 für zweiten Thermostaten · Typ DoS mit elektrischem Signalgeber

 $\label{eq:handverstellung Hv} \mbox{ mit Hubanzeige} \cdot \mbox{HvS mit elektrischem Signalgeber}$

Umkehrstück für NPS 2½ bis 4 (Sach-Nr. 1180-8098). Eingebaut zwischen Thermostatanschluss und Arbeitskörper mit Verbindungsrohr. Bei falscher Rohrleitungsmontage kann damit die Wirkrichtung umgekehrt werden und der Regler bleibt einsatzfähig.

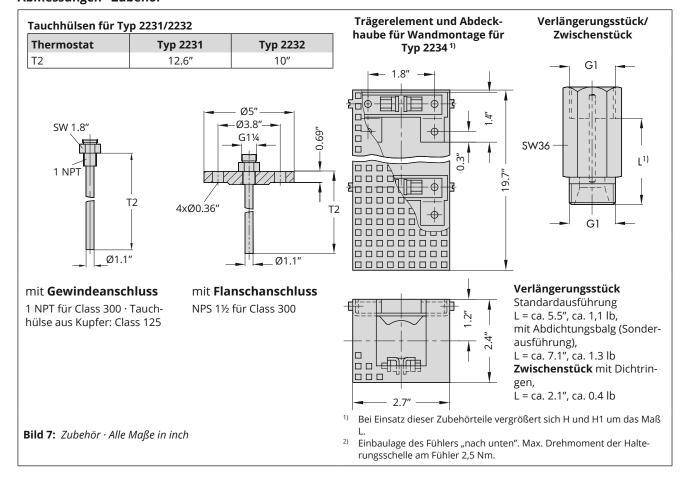
Bestelltext

Temperaturregler Typ 9/...,

NPS ..., Class ...,

Misch- oder Verteilventil,

Gehäusewerkstoff ...,


mit Thermostat Typ ..., Sollwertbereich ...°F,

Verbindungsrohr ... ft,

evtl. Sonderausführung ...,

evtl. Zubehör ...

Abmessungen · Zubehör

