EINBAU- UND BEDIENUNGSANLEITUNG

EB 8012

Originalanleitung

Ventil Typ 3241 · ANSI- und JIS-Ausführung

zur Kombination mit Antrieben, z. B. pneumatische Antriebe Typ 3271 oder Typ 3277

Hinweise zur vorliegenden Einbau- und Bedienungsanleitung

Diese Einbau- und Bedienungsanleitung (EB) leitet zur sicheren Montage und Bedienung an. Die Hinweise und Anweisungen dieser EB sind verbindlich für den Umgang mit SAMSON-Geräten. Die bildlichen Darstellungen und Illustrationen in dieser EB sind beispielhaft und daher als Prinzipdarstellungen aufzufassen.

- ⇒ Für die sichere und sachgerechte Anwendung diese EB vor Gebrauch sorgfältig lesen und für späteres Nachschlagen aufbewahren.
- ⇒ Bei Fragen, die über den Inhalt dieser EB hinausgehen, After Sales Service von SAMSON kontaktieren (aftersalesservice@samsongroup.com).

Gerätebezogene Dokumente, wie beispielsweise die Einbau- und Bedienungsanleitungen, stehen im Internet zur Verfügung:

https://www.samsongroup.com/de/downloads/dokumentation

Hinweise und ihre Bedeutung

▲ GEFAHR

Gefährliche Situationen, die zum Tod oder zu schweren Verletzungen führen

▲ WARNUNG

Situationen, die zum Tod oder zu schweren Verletzungen führen können

• HINWEIS

Sachschäden und Fehlfunktionen

i Info

Informative Erläuterungen

Praktische Empfehlungen

1	Sicherheitshinweise und Schutzmaßnahmen	5
1.1	Hinweise zu möglichen schweren Personenschäden	7
1.2	Hinweise zu möglichen Personenschäden	7
1.3	Hinweise zu möglichen Sachschäden	9
1.4	Gesonderte Hinweise zur Nutzung eines RFID-Transponders	10
1.5	Warnhinweise am Gerät	10
2	Kennzeichnungen am Gerät	11
2.1	Typenschild des Ventils	
2.2	Typenschild des Antriebs	
2.3	Werkstoffkennzeichnungen	
2.4	Schild bei nachziehbarer Stopfbuchspackung	
2.5	Optionaler RFID-Transponder	12
3	Aufbau und Wirkungsweise	
3.1	Sicherheitsstellungen	
3.2	Varianten	
3.3	Zusätzliche Einbauten	
3.4	Anbaugeräte	
3.5	Technische Daten	
3.5.1	ANSI-Ausführung	
3.5.2	ANSI-Ausführung PSA (Druckwechseladsorption)	
3.5.3	JIS-Ausführung	23
4	Lieferung und innerbetrieblicher Transport	
4.1	Lieferung annehmen	26
4.2	Ventil auspacken	
4.3	Ventil transportieren und heben	26
4.3.1	Ventil transportieren	
4.3.2	Ventil heben	
4.4	Ventil lagern	28
5	Montage	
5.1	Einbaubedingungen	
5.2	Montage vorbereiten	
5.3	Gerät montieren	
5.3.1	Externe Verdrehsicherung montieren	
5.3.2	Ventil und Antrieb zusammenbauen	
5.4	Ventil in die Rohrleitung einbauen	
5.5	Montiertes Ventil prüfen	
5.5.1	Dichtheit	
5.5.2	Hubbewegung	
5.5.3 5.5.4	Sicherheitsstellung Druckprobe	
	·	
6	Inbetriebnahme	
7	Betrieb	
7.1	Im Regelbetrieb arbeiten	
7.2	Im Handbetrieb arbeiten	
8	Störungen	45
8.1	Fehler erkennen und beheben	
8.2	Notfallmaßnahmen durchführen	46
9	Instandhaltung	
9.1	Periodische Prüfungen	48

Inhalt

9.2	Instandhaltungsarbeiten vorbereiten	51
9.3	Ventil nach Instandhaltungsarbeiten montieren	
9.4	Instandhaltungsarbeiten	52
9.4.1	Flachdichtung austauschen	53
9.4.2	Stopfbuchspackung austauschen	54
9.4.3	Sitz und Kegel austauschen	55
9.5	Ersatzteile und Verbrauchsgüter bestellen	57
10	Außerbetriebnahme	58
11	Demontage	60
11.1	Ventil aus der Rohrleitung ausbauen	
11.2	Antrieb demontieren	
12	Reparatur	62
12.1	Geräte an SAMSON senden	
13	Entsorgung	63
14	Zertifikate	64
15	Anhang	75
15.1	Anzugsmomente, Schmiermittel und Werkzeuge	
15.2	Ersatzteile	
15.3	Service	78

1 Sicherheitshinweise und Schutzmaßnahmen

Bestimmungsgemäße Verwendung

Das SAMSON-Durchgangsventil Typ 3241 ist in Kombination mit einem Antrieb, z. B. dem pneumatischen Antrieb Typ 3271 oder Typ 3277, für die Volumenstrom-, Druck- und Temperaturregelung von flüssigen, gasförmigen oder dampfförmigen Medien bestimmt.

Das Ventil und seine Antriebe sind für genau definierte Bedingungen ausgelegt (z. B. Betriebsdruck, eingesetztes Medium, Temperatur). Daher muss der Betreiber sicherstellen, dass das Stellventil nur dort zum Einsatz kommt, wo die Einsatzbedingungen den bei der Bestellung zugrundegelegten Auslegungskriterien entsprechen. Falls der Betreiber das Stellventil in anderen Anwendungen oder Umgebungen einsetzen möchte, muss er hierfür Rücksprache mit SAMSON halten. SAMSON haftet nicht für Schäden, die aus Nichtbeachtung der bestimmungsgemäßen Verwendung resultieren sowie für Schäden, die durch äußere Kräfte oder andere äußere Einwirkungen entstehen.

⇒ Einsatzgrenzen, -gebiete und -möglichkeiten den technischen Daten und dem Typenschild entnehmen.

Vernünftigerweise vorhersehbare Fehlanwendung

Das Stellventil ist nicht für die folgenden Einsatzgebiete geeignet:

- Einsatz außerhalb der durch die technischen Daten und durch die bei Auslegung definierten Grenzen
- Einsatz außerhalb der durch die am Stellventil angeschlossenen Anbaugeräte definierten Grenzen

Ferner entsprechen folgende Tätigkeiten nicht der bestimmungsgemäßen Verwendung:

- Verwendung von Ersatzteilen, die von Dritten stammen
- Ausführung von nicht beschriebenen Instandhaltungs- und Reparaturarbeiten

Qualifikation des Bedienungspersonals

Das Stellventil darf nur durch Fachpersonal unter Beachtung anerkannter Regeln der Technik eingebaut, in Betrieb genommen, instand gehalten und repariert werden. Fachpersonal im Sinne dieser Einbau- und Bedienungsanleitung sind Personen, die aufgrund ihrer fachlichen Ausbildung, ihrer Kenntnisse und Erfahrungen sowie der Kenntnis der einschlägigen Normen die ihnen übertragenen Arbeiten beurteilen und mögliche Gefahren erkennen können.

Schweißarbeiten dürfen nur von Personen ausgeführt werden, die eine nachweisliche Qualifikation hinsichtlich der verwendeten Schweißmethoden und -prozesse und der eingesetzten Werkstoffe haben.

Bei Geräten in explosionsgeschützter Ausführung müssen die Personen eine Ausbildung oder Unterweisung bzw. eine Berechtigung zum Arbeiten an explosionsgeschützten Geräten in explosionsgefährdeten Anlagen haben.

Bei Sauerstoffanwendungen muss das Bedienpersonal speziell für den korrekten und sicheren Umgang mit Sauerstoff ausgebildet sein.

Persönliche Schutzausrüstung

SAMSON empfiehlt, sich über die vom eingesetzten Medium ausgehenden Gefahren zu informieren, z. B. anhand der ► GESTIS-Stoffdatenbank.

Je nach eingesetztem Medium und/oder der jeweiligen Tätigkeit ist unter anderem folgende Schutzausrüstung erforderlich:

- Schutzkleidung, Schutzhandschuhe, Atemschutz und Augenschutz beim Einsatz heißer, kalter, aggressiver und/oder ätzender Medien
- Gehörschutz bei Arbeiten in Ventilnähe
- Industrieschutzhelm
- Auffanggurt, sofern Absturzgefahr besteht (z. B. bei Arbeiten in ungesicherten Höhen)
- Sicherheitsschuhe, ggf. mit Schutz vor statischer Entladung
- ⇒ Weitere Schutzausrüstung beim Anlagenbetreiber erfragen.

Änderungen und sonstige Modifikationen

Änderungen, Umbauten und sonstige Modifikationen des Produkts sind durch SAMSON nicht autorisiert. Sie erfolgen ausschließlich auf eigene Gefahr und können unter anderem zu Sicherheitsrisiken führen sowie dazu, dass das Produkt nicht mehr den für seine Verwendung erforderlichen Voraussetzungen entspricht.

Schutzeinrichtungen

Ob das Stellventil eine definierte Sicherheitsstellung bei Ausfall der Hilfsenergie einnimmt und ggf. welche, ist abhängig vom eingesetzten Antrieb (vgl. zugehörige Antriebsdokumentation). Bei Kombination des Ventils mit pneumatischen SAMSON-Antrieben Typ 3271 und Typ 3277 nimmt das Stellventil bei

Sicherheitshinweise und Schutzmaßnahmen

Ausfall der Hilfsenergie selbsttätig eine bestimmte Sicherheitsstellung ein (vgl. Kap. 3.1). Die Sicherheitsstellung entspricht der Wirkrichtung und ist bei SAMSON-Antrieben auf dem Typenschild des Antriebs eingetragen.

Warnung vor Restgefahren

Um Personen- oder Sachschäden vorzubeugen, müssen Betreiber und Bedienungspersonal Gefährdungen, die am Stellventil vom Durchflussmedium und Betriebsdruck sowie vom Stelldruck und von beweglichen Teilen ausgehen können, durch geeignete Maßnahmen verhindern. Dazu müssen Betreiber und Bedienungspersonal alle Gefahrenhinweise, Warnhinweise und Hinweise dieser Einbau- und Bedienungsanleitung befolgen.

Gefahren, die sich durch die speziellen Arbeitsbedingungen am Einsatzort des Ventils ergeben, müssen in einer individuellen Gefährdungsbeurteilung ermittelt werden und durch entsprechende Betriebsanweisungen des Betreibers vermeidbar gemacht werden.

Sorgfaltspflicht des Betreibers

Der Betreiber ist für den einwandfreien Betrieb sowie für die Einhaltung der Sicherheitsvorschriften verantwortlich. Der Betreiber ist verpflichtet, dem Bedienungspersonal diese Einbau- und Bedienungsanleitung und die mitgeltenden Dokumente zur Verfügung zu stellen und das Bedienungspersonal in der sachgerechten Bedienung zu unterweisen. Weiterhin muss der Betreiber sicherstellen, dass das Bedienungspersonal oder Dritte nicht gefährdet werden.

Der Betreiber ist außerdem dafür verantwortlich, dass die in den technischen Daten definierten Grenzwerte für das Produkt nicht über- oder unterschritten werden. Das gilt auch für An- und Abfahrprozesse. An- und Abfahrprozesse sind Teil der Betreiberprozesse und als solche nicht Bestandteil der vorliegenden Einbau- und Bedienungsanleitungen. SAMSON kann zu diesen Prozessen keine Aussagen treffen, da die operativen Details (z. B. Differenzdrücke und Temperaturen) individuell unterschiedlich und nur dem Betreiber bekannt sind.

Sorgfaltspflicht des Bedienungspersonals

Das Bedienungspersonal muss mit der vorliegenden Einbau- und Bedienungsanleitung und mit den mitgeltenden Dokumenten vertraut sein und sich an die darin aufgeführten Gefahrenhinweise, Warnhinweise und Hinweise halten. Darüber hinaus muss das Bedienungspersonal mit den geltenden

Vorschriften bezüglich Arbeitssicherheit und Unfallverhütung vertraut sein und diese einhalten.

Mitgeltende Normen und Richtlinien

Die Stellventile erfüllen die Anforderungen der europäischen Druckgeräterichtlinie 2014/68/EU und der europäischen Maschinenrichtlinie 2006/42/EG. Bei Ventilen, die mit der CE-Kennzeichnung versehen sind, gibt die Konformitätserklärung Auskunft über das angewandte Konformitätsbewertungsverfahren. Die entsprechende Konformitätserklärung steht in Kap. 14 zur Verfügung.

Die nichtelektrischen Stellventilausführungen ohne Auskleidung des Ventilgehäuses mit Isolierstoffbeschichtungen haben nach der Zündgefahrenbewertung, entsprechend der DIN EN ISO 80079-36 Absatz 5.2, auch bei selten auftretenden Betriebsstörungen keine eigene potentielle Zündquelle und fallen somit nicht unter die ATEX-Richtlinie 2014/34/EU.

⇒ Für den Anschluss an den Potentialausgleich Absatz 6.4 der DIN EN 60079-14, VDE 0165-1 beachten.

Mitgeltende Dokumente

Folgende Dokumente gelten in Ergänzung zu dieser Einbau- und Bedienungsanleitung:

- EBs für angeschlossene Anbaugeräte (Stellungsregler, Magnetventil usw.)
- EB für angebauten Antrieb, z. B.:
 - EB 8310-X für pneumatische Antriebe Typ 3271 und Typ 3277
- AB 0100 für Werkzeuge, Anzugsmomente und Schmiermittel
- Handbuch > H 02: Geeignete Maschinenkomponenten für pneumatische SAMSON-Stellventile mit Konformitätserklärung für vollständige Maschinen
- bei Sauerstoffanwendungen: Handbuch ► H 01
 Wenn das Ventil werkseitig für Sauerstoffanwendungen ausgelegt und vorbereitet wurde,
 ist die Verpackung des Ventils mit folgendem
 Klebeschild gekennzeichnet:

 Falls ein Gerät einen Stoff enthält, der auf der Kandidatenliste besonders besorgniserregender Stoffe der REACH-Verordnung steht, liefert SAMSON das Dokument "Zusatzinformationen zu Ihrer Anfrage/Bestellung" mit den kaufmännischen Auftragsdokumenten. Dieses Dokument listet zu den betroffenen Geräten u. a. die SCIP-Nummer, mit der weitere Informationen auf der Internetseite der europäischen Chemikalienagentur ECHA abgerufen werden können, vgl. ▶ https://www.echa.europa.eu/scip-database.

Weitere Informationen zur Material Compliance bei SAMSON stehen zur Verfügung unter ▶ www.samsongroup.com > Über SAMSON > Umwelt, Soziales & Unternehmensführung > Material Compliance

1.1 Hinweise zu möglichen schweren Personenschäden

▲ GEFAHR

Berstgefahr des Druckgeräts!

Stellventile und Rohrleitungen sind Druckgeräte. Unzulässige Druckbeaufschlagung oder unsachgemäßes Öffnen kann zum Zerbersten von Stellventil-Bauteilen führen.

- ⇒ Maximal zulässigen Druck für Ventil und Anlage beachten.
- ⇒ Vor Arbeiten an drucktragenden oder druckhaltenden Bauteilen des Stellventils betroffene Anlagenteile und Ventil drucklos setzen.
- ⇒ Medium aus betroffenen Anlagenteilen und Ventil entleeren.

1.2 Hinweise zu möglichen Personenschäden

A WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

A WARNUNG

Gehörschäden und Taubheit durch hohen Schallpegel!

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

A WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

- ⇒ Stellventil so einbauen, dass auf der Bedienerebene keine Entlüftungsöffnungen in Augenhöhe liegen oder in Richtung der Augen entlüften.
- ⇒ Geeignete Schalldämpfer und Stopfen verwenden.
- ⇒ Bei Arbeiten in unmittelbarer Nähe von pneumatischen Anschlüssen und im Gefahrenbereich von Entlüftungsöffnungen Augenschutz tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebsund Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

Sicherheitshinweise und Schutzmaßnahmen

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr durch vorgespannte Federn in pneumatischen Antrieben!

Stellventile, die mit Antrieben mit vorgespannten Antriebsfedern aussgestattet sind, stehen unter mechanischer Spannung. Diese Stellventile sind bei Kombination mit pneumatischen SAMSON-Antrieben Typ 3271/3277 erkennbar an den verlängerten Schrauben an der Unterseite des Antriebs.

⇒ Vor Arbeiten am Antrieb, die ein Öffnen des Antriebs erfordern oder bei blockierter Antriebsstange Kraft der Federvorspannung aufheben, vgl. zugehörige Antriebsdokumentation.

▲ WARNUNG

Verletzungsgefahr bei unsachgemäßer Demontage der unter Spannung stehenden Verdrehsicherung!

Wenn der Antrieb am Ventil einsatzbereit montiert ist, stehen die Schellen der Verdrehsicherung an der Kegelstange unter Spannung.

- ⇒ Bei Montage- und Demontagearbeiten gemäß den Anleitungen dieser EB vorgehen.
- ⇒ Verdrehsicherung der Kegelstange nur bei demontiertem bzw. kraftentkoppeltem Antrieb demontieren.

A WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

A WARNUNG

Verletzungsgefahr durch Mediumsreste im Ventil!

Bei Arbeiten am Ventil können Mediumsreste austreten und abhängig von den Mediumseigenschaften zu Verletzungen (z. B. Verbrühungen, Verätzungen) führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Wenn möglich, Medium aus betroffenen Anlagenteilen und Ventil entleeren.
- ⇒ Schutzkleidung, Schutzhandschuhe, Atemschutz und Augenschutz tragen.

A WARNUNG

Verletzungsgefahr aufgrund fehlerhafter Bedienung, Verwendung oder Installation bedingt durch unlesbare Informationen am Stellventil!

Im Laufe der Zeit können Einprägungen oder Aufprägungen am Stellventil, Aufkleber und Schilder verschmutzen oder auf andere Weise unkenntlich werden, sodass Gefahren nicht erkannt und notwendige Bedienhinweise nicht befolgt werden können. Dadurch besteht Verletzungsgefahr.

- ⇒ Alle relevanten Beschriftungen am Gerät in stets gut lesbarem Zustand halten.
- ⇒ Beschädigte, fehlende oder fehlerhafte Schilder oder Aufkleber sofort erneuern.

A WARNUNG

Schädigung der Gesundheit durch Kontakt mit Gefahrstoffen!

Einzelne Schmier- und Reinigungsmittel sind als Gefahrstoffe eingestuft und müssen als solche vom

Hersteller besonders gekennzeichnet und mit einem Sicherheitsdatenblatt versehen sein.

- ⇒ Sicherstellen, dass zu jedem Gefahrstoff ein entsprechendes Sicherheitsdatenblatt vorliegt. Ggf. Sicherheitsdatenblatt beim Hersteller des Gefahrstoffs anfordern.
- ⇒ Über vorhandene Gefahrstoffe und den korrekten Umgang mit Gefahrstoffen informieren.

1.3 Hinweise zu möglichen Sachschäden

O HINWEIS

Beschädigung des Ventils durch Verunreinigungen (z. B. Feststoffteilchen) in den Rohrleitungen!

Die Reinigung der Rohrleitungen in der Anlage liegt in der Verantwortung des Anlagenbetreibers.

⇒ Rohrleitungen vor Inbetriebnahme durchspülen.

• HINWEIS

Beschädigung des Ventils durch ungeeignete Mediumseigenschaften!

Das Ventil ist für ein Medium mit bestimmten Eigenschaften ausgelegt.

⇒ Nur Medium verwenden, das den Auslegungskriterien entspricht.

O HINWEIS

Beschädigung des Ventils und Leckagen durch zu hohe oder zu niedrige Anzugsmomente!

Die Bauteile des Stellventils müssen mit bestimmten Drehmomenten angezogen werden. Zu fest angezogene Bauteile unterliegen übermäßigem Verschleiß. Zu leicht angezogene Bauteile können Leckagen verursachen.

⇒ Anzugsmomente beachten, vgl. ► AB 0100.

• HINWEIS

Beschädigung des Ventils durch ungeeignete Werkzeuge!

Für Arbeiten am Ventil werden bestimmte Werkzeuge benötigt.

⇒ Nur von SAMSON zugelassene Werkzeuge verwenden, vgl. ► AB 0100.

• HINWEIS

Beschädigung des Ventils durch ungeeignete Schmiermittel!

Der Werkstoff des Ventils erfordert bestimmte Schmiermittel. Ungeeignete Schmiermittel können die Oberfläche angreifen und beschädigen.

⇒ Nur von SAMSON zugelassene Schmiermittel verwenden, vgl. ► AB 0100.

9 HINWEIS

Verunreinigung des Mediums durch ungeeignete Schmiermittel und verunreinigte Werkzeuge und Bauteile!

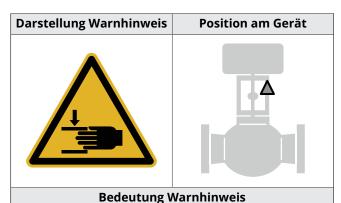
- ⇒ Falls erforderlich (z. B. bei Sauerstoffanwendungen), Ventil und verwendete Werkzeuge frei von Lösungsmitteln und Fetten halten.
- ⇒ Sicherstellen, dass nur geeignete Schmiermittel verwendet werden.

• HINWEIS

Beschädigung des Ventils durch nicht fachgerecht ausgeführte Arbeiten!

Die Auswahl von Schweißmethodik und -prozess sowie die Durchführung von Schweißarbeiten am Ventil liegen in der Verantwortung des Anlagenbetreibers bzw. der ausführenden Fachfirma. Dies schließt z. B. eventuell erforderliche Wärmebehandlungen des Ventils mit ein.

Sicherheitshinweise und Schutzmaßnahmen


- ⇒ Schweißarbeiten von Schweißfachpersonal ausführen lassen.
- ⇒ Beim Einschweißen beschichteter Ventile in die Rohrleitung und/oder einer etwaigen Wärmeeinbringung die Temperaturbeständigkeit des Beschichtungssystems (z. B. des Lacks) beachten. Die Nummer des eingesetzten Beschichtungssystems ist den Auftragsdokumenten zu entnehmen und die entsprechende Temperaturbeständigkeit der Broschüre ► WA 268.

1.4 Gesonderte Hinweise zur Nutzung eines RFID-Transponders

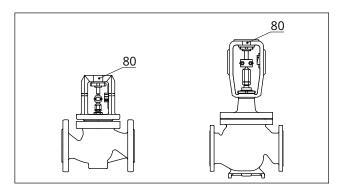
Der RFID-Transponder unterliegt bestimmten Begrenzungen im Einsatzbereich.

- ⇒ Bei Einsatz des Ventils in explosionsgefährdeten Bereichen Ex-Zulassungen des RFID-Transponders beachten.
- ⇒ RFID-Transponder keinem starken elektrischen Feld aussetzen.
- ⇒ Elektrostatische Aufladungen vermeiden.
- ⇒ Einsatzbereich des RFID-Transponders beachten.

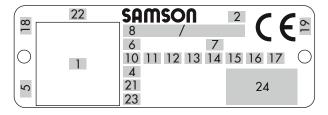
1.5 Warnhinweise am Gerät

bedeutung warminiwen

Warnung vor beweglichen Teilen!


Es besteht die Gefahr von Quetschungen durch die Hubbewegungen der Antriebs- und Kegelstange, wenn ins Joch gegriffen wird, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.

2 Kennzeichnungen am Gerät


2.1 Typenschild des Ventils

Das abgebildete Typenschild entspricht dem aktuell gültigen Typenschild bei Drucklegung des vorliegenden Dokuments. Das Typenschild auf dem Gerät kann von dieser Darstellung abweichen.

Bei den Nennweiten bis DN 150/NPS 6 ist das Typenschild (80) des Ventils am Flansch des Ventiloberteils angebracht. Ab DN 200/NPS 8 befindet sich das Typenschild am Joch.

Bild 1: Links: Typenschild am Flansch \cdot Rechts: Typenschild am Joch

Bild 2: Beschriftungspositionen des Typenschilds am Ventil

Pos.	Bedeutung der Beschriftungsposition
1	Identifikations-Code, optisch auslesbar
2	Typenbezeichnung
4	Werkstoff
5	Monat und Baujahr
6	Nennweite: DIN: DN · ANSI: NPS · JIS: DN
7	Nenndruck: DIN: PN · ANSI: CL · JIS: K
8	Auftragsnummer/Pos.
10	Durchflusskoeffizient: DIN: KV S-Wert · ANSI/JIS: CV -Wert

Pos.	Bedeutung der Beschriftungsposition
11	Kennlinie: %: gleichprozentig LIN: linear mod-lin: modifiziert linear
	NO/NC: Auf/Zu-Betrieb
12	Sitz-Kegel-Abdichtung: ME: metallisch HA: Hartmetall ST: metall. Grundwerkstoff stellitiert® KE: keramisch PT: weichdichtend PTFE PK: weichdichtend PEEK
13	Sitzcode (Garniturwerkstoff): auf Anfrage
14	Druckentlastung: D : DIN · B : ANSI/JIS
	Ausführung: M: Mischventil V: Verteilerventil
15	geräuschmindernde Maßnahme: 1: Strömungsteiler (ST) 1 2: ST 2 3: ST 3 1/PSA: ST 1 standard und sitzintegriert für PSA-Ventil AC-1/AC-2/AC-3/AC-5: Antikavitationsventil, Variante 1 bis 5 LK: Lochkegel LK1/LK2/LK3: Lochkegel mit ST 1 bis 3 MHC1: Mehrlochkäfig CC1: Kombikäfig ZT1: Zero Travel LDB: Low dB CDST: mehrstufige Garnitur für feststoffbeladene oder verunreinigte Medien (cavitation dirty service trim)
16	PSA-Ausführung: PSA
17	Bauform Käfig/Sitz: RT: Sitz mit Retainer (Sitzniederhalter) CG: Käfig geführt TH: Sitz geschraubt SF: Käfig hängend, Sitz geflanscht
18	Produktionsland
19	Kennnummer der benannten Stelle Europäische Union (notified body, Prüfbüro), z. B.: – 0062 für Bureau Veritas Services SAS, 8 Cours du Triangle, 92800 PUTEAUX – LA DEFENSE

Pos.	Bedeutung der Beschriftungsposition
21	PED: Druckgeräterichtlinie
	G1/G2 : Gase und Dampf Fluidgruppe 1 = gefährlich Fluidgruppe 2 = ungefährlich
	L1 : Flüssigkeiten Fluidgruppe 1 = gefährlich Fluidgruppe 2 = ungefährlich
	I/II/III: Kategorie 1 bis 3
22	Seriennummer
23	NE 53 (NAMUR-Empfehlung)
24	weitere Konformitätskennzeichnungen

i Info

Bild 2 und die Tabelle der Beschriftungspositionen zeigen eine allgemeine Übersicht aller Merkmale und möglichen Ausprägungen auf einem Ventil-Typenschild. Auf dem Typenschild des einzelnen Ventils sind nur die kennzeichnenden Positionen des Typs 3241 abgebildet.

∵ Tipp

SAMSON empfiehlt, die Seriennummer (Pos. 22 des Typenschilds) und/oder die Material-Nummer (gemäß Auftragsbestätigung) des Geräts in der Messstellendokumentation der Anlage zu notieren.

Unter Angabe der Seriennummer können die von SAMSON konfigurierten, aktuellen technischen Daten des Geräts abgerufen werden. Unter Angabe der Material-Nummer können die von SAMSON konfigurierten technischen Daten im Auslieferungszustand des Geräts abgerufen werden. Beide Abfragen erfolgen über folgende Internetseite:

www.samsongroup.com > Produkte > Elektronisches Typenschild

Mit diesen Informationen ist beispielsweise auch ein neues Typenschild bei Bedarf über den After Sales Service bestellbar.

2.2 Typenschild des Antriebs

Vgl. zugehörige Antriebsdokumentation.

2.3 Werkstoffkennzeichnungen

Die Ventile sind an Sitz und Kegel mit der Sachnummer gekennzeichnet. Der Werkstoff kann unter Angabe dieser Sachnummer bei SAMSON erfragt werden. Zusätzlich wird zur Identifikation des Garnitur-

werkstoffs ein Sitzcode verwendet. Dieser wird auf dem Typenschild unter "Sitzcode" angegeben.

2.4 Schild bei nachziehbarer Stopfbuchspackung

Wenn die Abdichtung der Ventilstange als nachziehbare Stopfbuchspackung ausgeführt ist, gibt ein Schild am Ventil darüber Auskunft, vgl. Bild 3.

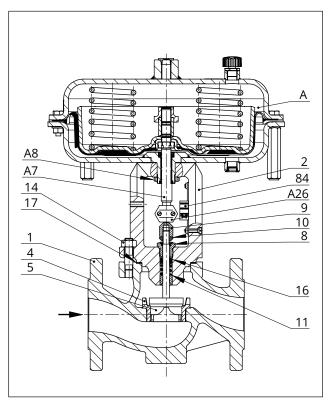
Bild 3: Schild bei nachziehbarer Stopfbuchspackung

2.5 Optionaler RFID-Transponder

Bei Ventilen, die mit RFID-Transponder bestellt wurden, ist der RFID-Transponder direkt neben dem Typenschild angebracht. Er enthält die gleichen Daten wie der Identifikations-Code auf dem elektronischen Typenschild und kann mit einem Smartphone, Tablet und mit einem HF-Reader gelesen werden. Einsatzbereiche gemäß technischen Daten, vgl. Kap. 3.5.

3 Aufbau und Wirkungsweise

Der Typ 3241 ist ein Einsitz-Durchgangsventil. Das Ventil Typ 3241 wird bevorzugt mit den pneumatischen SAMSON-Antrieben Typ 3271 oder Typ 3277 kombiniert, kann aber auch mit anderen Antrieben kombiniert werden.


Im Gehäuse (1) sind Sitz (4) und Kegel mit Kegelstange (5) verbaut bzw. ist bei einigen Ausführungen der Sitz bereits im Gehäuse integriert. Die Kegelstange ist über die Kupplungsschellen (A26) mit der Antriebsstange (A7) verbunden und durch die federbelastete V-Ring-Packung (16) abgedichtet.

Im pneumatischen Antrieb sind Federn je nach gewählter Sicherheitsstellung über oder unter einer Membran angeordnet, vgl. Kap. 3.1. Die Änderung des Stelldrucks, der auf die Membran wirkt, verstellt den Kegel. Die Fläche der Membran bestimmt die Antriebsgröße.

Das Ventil wird in Pfeilrichtung durchströmt. Wenn der Stelldruck steigt, nimmt die Kraft auf die Membran im Antrieb zu. Die Federn werden zusammengedrückt. Abhängig von der gewählten Wirkrichtung fährt die Antriebsstange ein oder aus. Dies verändert die Stellung des Kegels zum Sitz, was wiederum die Durchflussmenge und damit den Druck p_2 bestimmt.

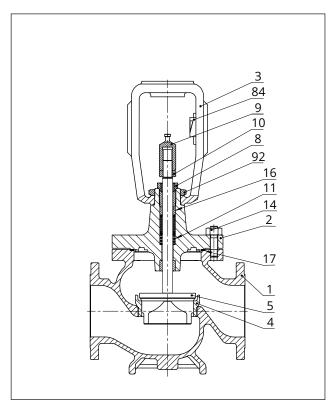

Bei Stellventilen, die als Auf/Zu-Ventil eingesetzt werden, empfiehlt SAMSON den Anbau eines Stellungsreglers mit integrierter Diagnosefirmware, vgl. Kap. 3.4. Mit der Softwarefunktion "Teilhubtest" kann das Festfressen einer im Normalfall in der Endlage befindlichen Absperrarmatur verhindert werden.

Bild 4: Stellventil Typ 3241-1 mit pneumatischem Antrieb Typ 3271, Gehäuse bis DN 150/NPS 6

- Gehäuse
- 2 Flansch (Ventiloberteil)
- 4 Sitz
- 5 Kegel (mit Kegelstange)
- 8 Gewindebuchse (Packungsmutter)
- 9 Kupplungsmutter
- 10 Kontermutter
- 11 Feder

- 14 Mutter
- 16 Packungsringe
- 17 Flachdichtung (Gehäusedichtung)
- 84 Hubschild
- A Antrieb
- A7 Antriebsstange
- A8 Ringmutter
- A26 Kupplungsschelle

Bild 5: Ventil Typ 3241, Gehäuse DN 200 bis 300/NPS 8 bis 12

1	Gehäuse	10	Kontermutter
2	Ventiloberteil	11	Feder
3	Joch	14	Muttern
4	Sitz	16	Packung
5	Kegel (mit Kegelstange)	17	Flachdichtung (Gehäuse-
8	Gewindebuchse (Pa-		dichtung)
	ckungsmutter)	84	Hubschild
9	Kupplungsmutter	92	Schlagmutter

3.1 Sicherheitsstellungen

Ob das Stellventil eine definierte Sicherheitsstellung bei Ausfall der Hilfsenergie einnimmt und ggf. welche, ist abhängig vom eingesetzten Antrieb (vgl. zugehörige Antriebsdokumentation).

Bei pneumatischen SAMSON-Antrieben Typ 3271 und Typ 3277 hat das Stellventil je nach Anordnung der Druckfedern zwei unterschiedliche Sicherheitsstellungen:

- Antriebsstange durch Feder ausfahrend (FA)
 Bei Verringerung des Stelldrucks oder bei Ausfall der Hilfsenergie bewegen die Federn die Antriebsstange nach unten und schließen das Ventil. Das Öffnen des Ventils erfolgt bei steigendem Stelldruck gegen die Kraft der Federn.
- Antriebsstange durch Feder einfahrend (FE)
 Bei Verringerung des Stelldrucks oder bei Ausfall der Hilfsenergie bewegen die Federn die Antriebsstange nach oben und öffnen das Ventil.

Das Schließen des Ventils erfolgt bei steigendem Stelldruck gegen die Kraft der Federn.

☆ Tipp

Die Wirkrichtung des Antriebs kann bei Bedarf umgekehrt werden. Vgl. hierzu die Einbau- und Bedienungsanleitung für den jeweiligen pneumatischen Antrieb: ► EB 8310-X für Typ 3271 und Typ 3277

3.2 Varianten

Mit Isolierteil/Balgteilabdichtung

Durch den Aufbau im Baukastensystem kann die Normalausführung mit einem Isolierteil oder einer Balgteilabdichtung ergänzt werden.

Ausführung als Mikroventil

Beim Mikroventil ist im Ventilgehäuse statt der Sitz/ Kegel-Kombination ein Mikrostellelement eingebaut.

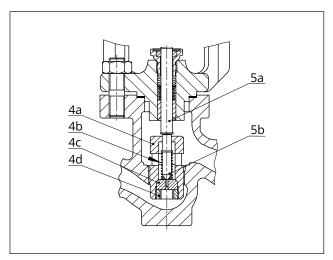


Bild 6: Mikrostellelement

4a	Sitzgehäuse	4d	Mutter
4b	Feder	5a	Kegelstange
4c	Sitz	5b	Kegel

Antriebe

In dieser EB wird die bevorzugte Kombination des Ventils mit einem pneumatischen Antrieb Typ 3271 oder Typ 3277 beschrieben. Der pneumatische Antrieb (mit oder ohne Handverstellung) kann gegen einen pneumatischen Antrieb anderer Größe, aber gleichen Hubs ausgetauscht werden.

⇒ Maximal zulässige Antriebskraft beachten.

i Info

Wenn bei der Kombination Ventil/Antrieb der Hubbereich des Antriebs größer ist als der Hubbereich des Ventils, muss das Federpaket des Antriebs so vorgespannt werden, dass die Hübe übereinstimmen, vgl. zugehörige Antriebsdokumentation.

Anstelle des einfachen pneumatischen Antriebs kann ein Antrieb mit einer zusätzlichen Handverstellung oder ein elektrischer Antrieb aufgebaut werden, vgl. Übersichtsblatt ► T 8300.

3.3 Zusätzliche Einbauten

Schmutzfänger

SAMSON empfiehlt, vor dem Ventilgehäuse einen SAMSON-Schmutzfänger einzubauen. Ein Schmutzfänger verhindert, dass Feststoffanteile im Medium das Stellventil beschädigen.

Bypass und Absperrventile

SAMSON empfiehlt, vor dem Schmutzfänger und hinter dem Stellventil je ein Absperrventil einzubauen und einen Bypass anzulegen. Durch einen Bypass muss bei Instandhaltungs- und Reparaturarbeiten am Ventil nicht die gesamte Anlage außer Betrieb genommen werden.

Isolierung

Zur Reduktion des Durchgangs von Wärmeenergie können Stellventile einisoliert werden.

Gegebenenfalls Hinweise in Kap. 5 beachten.

Prüfanschluss

Bei der Ausführung mit Balgteilabdichtung kann am oberen Ende des Zwischenstücks ein Prüfanschluss (G 1/8) verwendet werden, um die Dichtheit des Balgs zu überprüfen.

Besonders bei Flüssigkeiten und Dämpfen empfiehlt SAMSON, dort eine geeignete Leckanzeige (wie z. B. Kontaktmanometer, Ablauf in offenes Gefäß oder Schauglas) anzuschließen.

Greifschutz

Für Einsatzbedingungen, in denen ein erhöhtes Maß an Sicherheit notwendig ist (z. B. wenn das Stellventil auch für nicht geschultes Fachpersonal frei zugänglich ist), ist ein Greifschutz vorzusehen, um eine Quetschgefahr durch bewegliche Teile (Antriebs- und Kegelstange) auszuschließen. Die Entscheidung über die Verwendung eines Greifsschutz obliegt dem Anlagenbetreiber und ist abhängig vom

Gefährdungspotential der individuellen Anlage und ihren jeweiligen Bedingungen.

Geräuschminderung

Zur Verringerung von Geräuschemissionen können Innengarnituren mit Strömungsteilern eingesetzt werden (vgl. ► T 8081).

3.4 Anbaugeräte

Vgl. Übersichtsblatt ► T 8350

3.5 Technische Daten

Die Typenschilder von Ventil und Antrieb bieten Informationen zur Ausführung des Stellventils, vgl. Kap. 2.

i Info

Ausführliche Informationen zum Ventil Typ 3241 stehen in folgenden Typenblättern zur Verfügung:

- ► T 8012 (ANSI-Ausführung)
- ► T 8012-1 (PSA ANSI-Ausführung)
- T 8012-2 (JIS-Ausführung)

Konformität

Das Ventil Typ 3241 ist CE-konform.

CE

Geräuschemissionen

SAMSON kann keine allgemeingültige Aussage über die Geräuschentwicklung treffen. Die Geräuschemissionen sind abhängig von der Ausführung des Ventils, der Ausstattung der Anlage sowie dem eingesetzten Medium.

Optionaler RFID-Transponder

Einsatzbereiche gemäß der technischen Spezifikation und der Ex-Zertifikate. Diese Dokumente stehen im Internet zur Verfügung:

www.samsongroup.com > Produkte > Elektronisches Typenschild

Die maximal zulässige Temperatur am Transponder beträgt 185 °F (85 °C).

i Info

Für Antriebe gilt die zugehörige Antriebsdokumentation, z. B. für pneumatische SAMSON-Antriebe:

- ► T 8310-1 für Antriebe Typ 3271 und Typ 3277 bis 750 cm² Antriebsfläche
- T 8310-2 für Antriebe Typ 3271 ab 1000 cm² Antriebsfläche
- T 8310-3 für Antriebe Typ 3271 mit 1400-60 cm²
 Antriebsfläche

3.5.1 ANSI-Ausführung

Tabelle 1: Technische Daten für Typ 3241

Nennwe	eite	NPS	110	1/22		1/2	.12	,	1⁄2, 1,	11/2, 2, 32)		
ASTM-Werkstoff			Graugus	s A126 B	Stahlguss A216 WCC	Korro- sionsf. Stahlguss A351 CF8M	Stahlguss A352 LCC	Korro- sionsf. Stahlguss A351 CF8	Schmie- destahl A105	Korrosionsf. Schmie- destahl A182 F316		
Nenndru	uck	Class	125	250		150	/300			300		
		Flansche	FF	-		R	⊑ 1)			RF ¹⁾		
Anschlu	ssart	Anschweißen- den	-	-		ASME B16.25				-		
		Gewinde	-	NPT		•	-			_		
Sitz-Keg	el-Dichtung			metallisch die	chtend · weic	h dichtend · m	netallisch für	erhöhte Anfo	rderungen			
Kennlini	enform			gleichpro	ozentig · line	ar (entspreche	end Übersich	ntsblatt 🕨 T 80	000-3)			
Stellverh	nältnis			50 :	1 bei NPS ½	2 · 30 : 1 bei	NPS 2½6 ·	50 : 1 ab NPS	8			
Heizmar	ntel					Class	150					
Konform	nität		CE									
Temper	aturbereiche i	n °F (°C) · zulässige	Betriebsdrück	e gemäß Druck	-Temperatui	r-Diagramm (v	gl. Übersich	tsblatt 🕨 T 80	00-2)			
Gehäuse	e mit Standard-0	Oberteil	alle Nennweiten: 14428 (-10+220) Nennweiten NPS 8 bis 12 mit Hochtemperaturpackung: 14662 (-10+350)									
		Isolierteil	-20 (-29	+449 +232)	-20+797 (-29 +425)	-58+842 ³⁾ (-50+450)	-50+653 (-46 +345)	-58+842 ³⁾ (-50+450)	-20+797 (-29 +425)	-58+842 ³⁾ (-50+450)		
Gehäu-	langem Isolierteil		-		-	-320+842 (-196+450)	-	-320+842 (-196+450)	-	-320+842 (-196+450)		
se mit	Balgteil		-20 (-29	+449 +232)	-20+797 (-29 +425)	-58+842 ³⁾ (-50+450)	-50+653 (-46 +345)	-58+842 ³⁾ (-50+450)	-20+797 (-29 +425)	-58+842 ³⁾ (-50+450)		
	langem Balgteil -		_			-320+842 (-196+450)						
	Standard	met. dichtend			·	-320+842 (-	196+450)					
Ventil-	Stariuaru	weich dichtend				-320+428 (-	196+220)					
kegel	druckentlas-	mit PTFE-Ring		-58.	+428 (-50	+220) · tiefere	Temperatur	en auf Anfrag	e			
	tet	mit Graphitring				50842 (1	0450)					

Nennweite NPS			S 110	1/22		1½, 2, 3²)				
ASTM-Werkstoff		Graugu	ss A126 B	Stahlguss A216 WCC		Stahlguss A352 LCC	Korro- sionsf. Stahlguss A351 CF8	Schmie- destahl A105	Korrosionsf. Schmie- destahl A182 F316	
Leckage	e-Klasse nach A	NSI FCI 70-2								
	Standard	met. dichter	d	Standard: IV · für erhöhte Anforderungen: V ⁴⁾						
Ventil-	Stariuaru	weich dichter	d	VI						
kegel	druckentlas- tet	met. dichter	d Sondera	Standard: IV \cdot mit PTFE- oder Graphit-Druckentlastungsring Sonderausführung: V \cdot für erhöhte Anforderungen (nur mit PTFE-Druckentlastungsring) au						uf Anfrage

¹⁾ Andere Ausführungen auf Anfrage

Maße

Maße in inch und mm

Tabelle 2: Maße Ventil Typ 3241 bis NPS 6 (DN 150)

		NPS	1/2	3/4	1	11/2	2	21/2	3	4	6
Ventil		DN	15	20	25	40	50	65	80	100	150
	NPT	1/2	3/4	1	11/2	2	-	-	-	-	
	Class 125 und 150	in	7,25	7,25	7,25	8,75	10,00	10,88	11,75	13,88	17,75
Länge L¹)	Class 125 und 150	mm	184	184	184	222	254	276	298	352	451
Larige L'	Class 300	in	7,50	7,62	7,75	9,25	10,50	11,50	12,50	14,50	18,62
	Class 500	mm	190	194	197	235	267	292	318	368	473
Länge L1	Class 250	in	6	6	6	8	9,25	_	-	-	-
	Class 250	mm	152,4	152,4	152,4	203,2	235	-	-	-	-
	≤750	in	8,74	8,74	8,74	8,78	8,78	10,31	10,31	13,94	15,35
		mm	222	222	222	223	223	262	262	354	390
H1 bei Antrieb	1000	in									
cm²	1400-60	mm				_				413	450
	1400-120	in									
	2800	mm					_				
	Ctableuse	in	1,733)	1,733)	1,733)	2,833)	2,833)	3,86	3,863)	4,65	6,89
H2 ²⁾ für	Stahlguss -	mm	443)	443)	443)	723)	72 ³⁾	98	983)	118	175
nz-' lui	Calacada	in	2,1		2,76	3,7	3,93		5,2		
	Schmiedestahl	mm	53	_	70	94	100	_	132	•	_

¹⁾ Baulängen nach ANSI/ISA 75.08.01

²⁾ NPS 3 nur in A105

ab NPS 8 bis -320 °F (-196 °C)

⁴⁾ Leckage-Klasse V für Temperaturen <-58 °F (<-50 °C) auf Anfrage

Das Maß H2 beschreibt den Abstand von der Mitte des Strömungskanals bis zur Unterseite des Gehäusebodens.

Das Maß H2 ist bei diesem Ventil nicht der tiefste Punkt des Ventils. Der tiefste Punkt dieses Ventils ist die Unterseite des Anschlussflansches dessen Maß sich aus der Norm des Anschlussflansches ergibt.

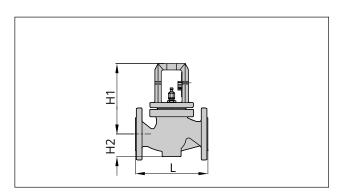
Aufbau und Wirkungsweise

Tabelle 3: Maße Ventil Typ 3241 ab NPS 8 (DN 200)

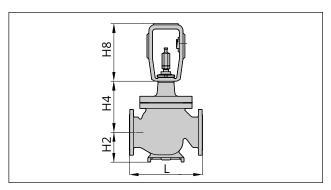
Ventil		NPS	8	10 (Gehäuse Grauguss)	10	10	12
		DN	200	250 (Gehäuse Grauguss bis SB 200 mm)	250 bis SB 200 mm	250 ab SB 250 mm	300
	Class 125 und 150	in	21,38	26,50	26,50	26,50	29,00
Länge L ¹⁾	Class 125 dild 150	mm	543	673	673	673	737
	Class 300	in	22,38	27,88	27,88	27,88	30,50
	Class 500	mm	568	708	708	708	775
H4		in	15,35	17,76	17,76	17,76	25,67
Π4		mm	390	451	451	451	652
	1000	in	16,46	16,46	16,46		19,80
H8 ²⁾ bei An-	1400-60	mm	418	418	418	_	503
trieb cm²	1400-120	in	19,80	19,80	19,80	25,59	25,59
	2800	mm	503	503	503	650	650
un		in	9,06	10,24	11,61	11,61	13,98
П	H2		230	260	295	295	355

¹⁾ Baulängen nach ANSI/ISA 75.08.01

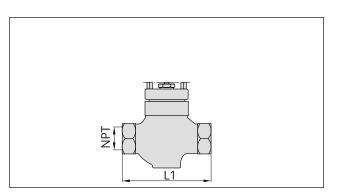
Tabelle 4: Maße Ventil Typ 3241 mit Isolier- oder Balgteil bis NPS 6 (DN 150)


Nonnweite			NPS	1/2	3/4	1	11/2	2	21/2	3	4	6
Nennweite	Nennweite			15	20	25	40	50	65	80	100	150
		Isolier-/Balgteil										•
		kurz –	in		16,10		16	,14	17	,76	25,04	26,46
	≤750 cm²	Kurz	mm		409		4	410		51	636	672
	≥750 CIII	lang -	in		28,07		28,11		29,72		34,53	35,94
			mm		713			714		755		913
	1000 1400-60	kurz –	in				_				27,36	28,82
H4 bei An-		KUIZ	mm								695	732
trieb cm²		lang -	in		_						36,85	38,31
		iarig	mm									973
		kurz –	in					_				
	1400-120 2800	Kuiz	mm									
		2800 lang -	in					_				
		lalig	mm					-				

Falls Ventile mit C_v 290, 420 oder 735 (K_{vs} 250, 360 oder 630) und Nennhub 60 mm mit Überhub betrieben werden, erhöht sich H8 bauartbedingt um 6,69" (170 mm).


Tabelle 5: Maße Ventil Typ 3241 mit Isolier- oder Balgteil ab NPS 8 (DN 200)

Ausführung	mit			Isoli	erteil			Balg	gteil	
		NPS	8	10 bis SB 200 mm	10 SB 250 mm	12	8	10 bis SB 200 mm	10 SB 250 mm	12
Nennweite '	Ventil	DN	200	250 bis SB 200 mm	250 SB 250 mm	300	200	250 bis SB 200 mm	250 SB 250 mm	300
	1000	in	32,7	41,9		45,3	40,8	58,7		59,8
Höhe H4 bei Antrieb	1400-60	mm	830	1065	_	1150	1036	1492	_	1520
cm ²	1400-120	in	32,7	41,9	41,9	45,3	40,8	58,7	58,7	59,8
	2800	mm	830	1065	1065	1150	1036	1492	1492	1520
	1000	in	16,5	16,5		19,8	16,5	16,5		19,8
H8 bei An-	1400-60	mm	418	418	_	503	418	418	_	503
trieb cm²	1400-120	in	19,8	19,8	25,6	25,6	19,8	19,8	25,6	25,6
	2800	mm	503	503	650	650	503	503	650	650


Maßbilder

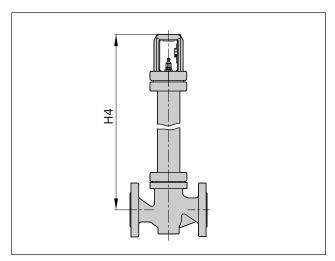

Bild 7: *Typ 3241 · bis Nennweite DN 150/NPS 6/DN 150A*

Bild 8: Typ 3241 · ab Nennweite DN 200/NPS 8

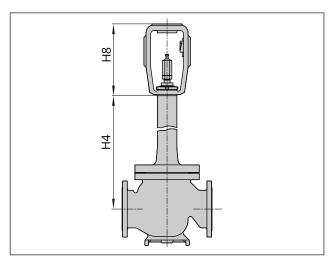


Bild 9: Typ 3241 mit Gewindeanschluss ½ bis 2 NPT

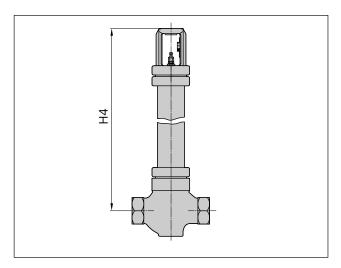


Bild 10: Typ 3241 mit Isolier-/Balgteil bis Nennweite DN 150/NPS 6/DN 150A

Aufbau und Wirkungsweise

Bild 11: Typ 3241 mit Isolier-/Balgteil ab Nennweite DN 200/NPS 8

Bild 12: Typ 3241 mit Isolier-/Balgteil und Gewindeanschluss ½ bis 2 NPT

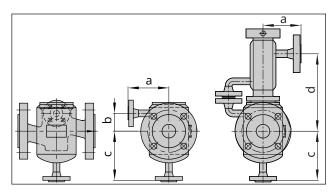
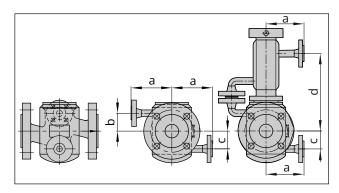

Maße mit Heizmantel

Tabelle 6: Maße Ventil Typ 3241 mit Heizmantel¹⁾


Nennweite	NPS	1	1/2 ⋅ 2	21/2 · 3	4	6	812
Nennweite	DN	25	3250	6580	100	150	200300
а	in	4,3	5,5	7,1	7,9	10,4	auf Anfrage
а	mm	110	140	180	200	265	auf Anfrage
b	in	0,6	0,8	1,4	2	3,2	auf Anfrage
b	mm	15	20	35	50	80	auf Anfrage
С	in	5,5	6,7	8,5	10	5,1	auf Anfrage
С	mm	140	170	215	255	130	auf Anfrage
d	in	7,5	7,5	9,1	12,6	14	auf Anfrage
d	mm	190	190	230	320	355	auf Anfrage

Nicht für Ventile mit Gehäusewerkstoff A126 B

Maßbilder mit Heizmantel

Bild 13: Typ 3241 mit Heizmantel bis Nennweite DN 100/NPS 4 · im Bild rechts mit Isolier-/Balgteil

Bild 14: Typ 3241 mit Heizmantel ab Nennweite DN 150/NPS 6 · im Bild rechts mit Isolier-/Balgteil

Gewichte

Gewichte in lbs und kg

Tabelle 7: Gewichte Ventil Typ 3241

					_		_		_	_	_	_		
Ventil		NPS	1/2	3/4	1	11/2	2	21/2	3	4	6	8	10	12
Ventil		DN	15	20	25	40	50	65	80	100	150	200	250	300
Ausführung	mit Stan	dardob	erteil											
Gewicht ¹⁾ oh	ne An-	lbs	15	18	20	35	44	71	82	137	287	1096	1892	2535
trieb		kg	7	8	9	16	20	32	37	62	130	497	858	1150
Ausführung mit Isolierteil														
	Isolier-													
	teil													
Gewicht ¹⁾	kurz	lbs	22	24	26	49	57	88	99	176	353	1191	2220	2690
ohne An- trieb	kurz	kg	10	11	12	22	26	40	45	80	160	540	1007	1220
ti ico	lang	lbs	31	33	35	57	66	97	108	194	370			
	lang	kg	14	15	16	26	30	44	49	88	168		_	

Ventil		NPS	1/2	3/4	1	1½	2	21/2	3	4	6	8	10	12
ventii		DN	15	20	25	40	50	65	80	100	150	200	250	300
Ausführung	mit Balg	teil												
	Balgteil													
Gewicht ¹⁾		lbs	22	24	26	49	57	88	99	176	353	1312	2407	2793
ohne An-		kg	10	11	12	22	26	40	45	80	160	595	1092	1267
trieb		lbs	31	33	35	57	66	97	108	194	370			
	lang —	kg	14	15	16	26	30	44	49	88	168			

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

3.5.2 ANSI-Ausführung PSA (Druckwechseladsorption)

Tabelle 8: Technische Daten für Typ 3241 PSA

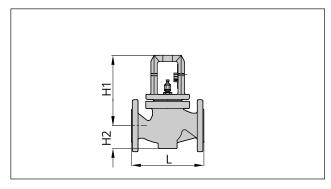
Nennw	reite	NPS	½, ¾¹¹, 1, 1½, 2, 2½¹¹, 3, 4, 6	1⁄2, 1, 11⁄2, 2, 3	½, ¾¹¹, 1, 1½, 2, 2½¹¹, 3, 4, 6	1⁄2, 1, 11⁄2, 2, 3	
ASTM-V	Werkstoff		A216 WCC	A105	A351 CF8M	A182 F316	
Nenndr	ruck	Class	150/300	300	150/300	300	
Anschlu	ıssart	Flansche		RI	=2)		
Sitz-Keg	gel-Dichtung		weich di	erungen			
Kennlin	ienform						
Stellver	hältnis						
Konforr	mität			C	ϵ		
Tempe	raturbereich	ie in °F (°C) · zulā	ässige Betriebsdrücke ge	emäß Druck-Temperatur	-Diagramm (vgl. Übersic	htsblatt T 8000-2)	
Ventil				14302 (-	10+150)		
Leckag	e-Klasse nac	h ANSI FCI 70-2					
Ventil-		weich dichtend		V	/ I		
kegel	motallisch dichtand für ar						

¹⁾ Nennweite auf Anfrage

Maße

Maße in inch und mm

Tabelle 9: Maße Ventil Typ 3241 PSA


Ventil		NPS	1/2	3/4 ⁴⁾	1	11/2	2	21/24)	3	4	6
ventii		DN	15	204)	25	40	50	65 ⁴⁾	80	100	150
	Class 150 RF	in	7,25	7,25	7,25	8,75	10	10,88	11,75	13,88	17,75
Längol	Class 130 KF	mm	184	184	184	222	254	276	298	352	451
Länge L	Class 300 RF		7,50	7,62	7,75	9,25	10,50	11,50	12,50	14,50	18,62
Class 300 RF		mm	190	194	197	235	267	292	318	368	473
H1		in	8,66	8,66	8,66	8,66	8,66	13	13	13,74	15,34
н I ————————————————————————————————————		mm	220	220	220	220	220	3301)	3301)	350 ¹⁾	390¹)
		in	1,733)	1,73 ³⁾	1,733)	2,833)	2,833)	3,86	3,86 ³⁾	4,65	6,89
112 · Ca.		mm	443)	443)	443)	72 ³⁾	72 ³⁾	98	98³)	118	175

²⁾ Andere Ausführungen auf Anfrage

Ventil	NPS	1/2	3/44)	1	11/2	2	21/24)	3	4	6
Ventu	DN	15	204)	25	40	50	65 ⁴⁾	80	100	150
H2 ²⁾ ca. bei Ausführung Schmiede-	in	2,1		2,76	3,7	3,93		5,2		
stahl	mm	53	_	70	94	100	_	132	-	-

- Bei Antrieben vom Typ 3275A mit Antriebsfläche 804 cm² erhöht sich H1 um 65 mm
- ²⁾ Das Maß H2 beschreibt den Abstand von der Mitte des Strömungskanals bis zur Unterseite des Gehäusebodens.
- Das Maß H2 ist bei diesem Ventil nicht der tiefste Punkt des Ventils. Der tiefste Punkt dieses Ventils ist die Unterseite des Anschlussflansches dessen Maß sich aus der Norm des Anschlussflansches ergibt.
- 4) Nennweite auf Anfrage

Maßbilder

Bild 15: *Typ 3241 · bis Nennweite DN 150/NPS 6/DN 150A*

Gewichte

Gewichte in lbs und kg

Tabelle 10: Gewichte Ventil Typ 3241 PSA

Ventil	NPS	1/2	3/4 ²⁾	1	1½	2	2½ 2)	3	4	6
Ventu	DN	15	20	25	40	50	65	80	100	150
Gewicht ¹⁾ ohne Antrieb	lbs	11	13	15	26	33	53	66	92	264
Gewicht. Onne Antheb	kg	5	6	7	12	15	24	30	42	120

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

3.5.3 JIS-Ausführung

Tabelle 11: Technische Daten für Typ 3241

			4-4	4504		454 054 40		
Nennweite	DN		15A	.150A		15A · 25A · 40	A · 50A · 80A¹)	
ASTM-Werkstoff		Grauguss FC 250	Stahlguss A216 WCC	Korrosionsf. Stahlguss A351 CF8M	Stahlguss A352 LCC	Schmiede- stahl A105	Korrosionsf. Schmie- destahl A182 F316	
Nenndruck	JIS	10K		10K · 20K		20	OK	
Anschlussart	Flansche	FF		RF ²⁾		R	F ²⁾	
Sitz-Kegel-Dichtung		metallisch die	chtend · weich	dichtend · meta	allisch dichtend	d für erhöhte A	nforderungen	
Kennlinienform		glei	chprozentig · li	near (entsprech	hend Übersich	tsblatt 🟲 T 800	0-3)	
Stellverhältnis			50:1	bei DN 15A50	0A · 30 : 1 ab D	N 50A		
Temperaturbereiche in ^c	°C · zulässige Betrie	triebsdrücke gemäß Druck-Temperatur-Diagramm (vgl. Übersichtsblatt > T 8000-2)						
Gehäuse mit Standard-Ob	erteil	-10+220						

²⁾ Nennweite auf Anfrage

Aufbau und Wirkungsweise

Nennweite		DN		15A	.150A		15A · 25A · 40	A · 50A · 80A¹)			
ASTM-Werk	stoff		Grauguss FC 250	Stahlguss A216 WCC	Korrosionsf. Stahlguss A351 CF8M	Stahlguss A352 LCC	Schmiede- stahl A105	Korrosionsf. Schmie- destahl A182 F316			
		Isolierteil	-29+220	-29+425	-50+425	-29+425	-29+425	-50+425			
Gehäuse		langem Isolierteil	-	_	-196+425	-	-	-196+425			
mit		Balgteil	-29+220	-29+425	-50+425	-29+425	-29+425	-50+425			
		langem Balgteil	-	196+425							
	Standard	met. dichtend			-196	.+425					
Ventillegal	Stanuaru	weich dichtend		-196+220							
Ventilkegel	druckent-	mit PTFE-Ring		-50+2	20 · tiefere Tem	peraturen auf	Anfrage				
	lastet	mit Graphitring			10	425					
Leckage-Kla	sse nach DIN	N EN 60534-4									
	Standard	met. dichtend		Standa	rd: IV · für erhö	hte Anforderu	ngen: V				
	Standard	weich dichtend	l VI								
Ventilkegel	druckent- lastet	met. dichtend	Standard: IV · mit PTFE- oder Graphit-Druckentlastungsdichtring Sonderausführung: V · für erhöhte Anforderungen (nur mit PTFE-Druckentlastungsdichtring) auf Anfrage								

¹⁾ DN 80A nur in Schmiedestahl A105 erhältlich

Maße

Maße in mm

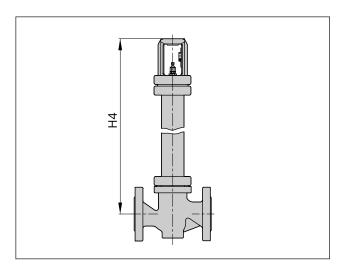
Tabelle 12: Maße Ventil Typ 3241

Ventil		DN	15A	20A	25A	40A	50A	65A	80A	100A	150A
Längol	10K	mm	184	184	184	222	254	276	298	352	451
Länge L	20K	mm	190	194	197	235	267	292	318	368	473
H1 bei Antrieb cm²	≤750v2	mm	222	222	222	223	223	262	262	354	390
H2¹) für	Stahlguss	mm	442)	442)	442)	722)	722)	98	982)	118	175
HZ ¹⁷ IUI	Schmiedestahl	mm	53	-	70	94	100	-	132	-	-

Das Maß H2 beschreibt den Abstand von der Mitte des Strömungskanals bis zur Unterseite des Gehäusebodens.

Tabelle 13: Maße Ventil Typ 3241 mit Isolier- oder Balgteil

Nennweite DN		15A	20A	25A	40A	50A	65A	80A	100A	150A	
		Isolier-/Balgteil									
H4 bei Antrieb	≤750	kurz		409		4	10	45	51	636	672
cm²	≥/50	lang		713		7	14	75	55	877	913


²⁾ Andere Ausführungen auf Anfrage

Das Maß H2 ist bei diesem Ventil nicht der tiefste Punkt des Ventils. Der tiefste Punkt dieses Ventils ist die Unterseite des Anschlussflansches dessen Maß sich aus der Norm des Anschlussflansches ergibt.

Maßbilder

Bild 16: *Typ 3241 · bis Nennweite DN 150/NPS 6/DN 150A*

Bild 17: Typ 3241 mit Isolier-/Balgteil bis Nennweite DN 150/NPS 6/DN 150A

Gewichte

Gewichte in kg

Tabelle 14: *Gewichte Ventil Typ 3241*

Ventil DN		15A	20A	25A	40A	50A	65A	80A	100A	150A
Ausführung mit Standardoberteil										
Gewicht ¹⁾ ohne Antrieb 7 8 9 16 20 32 37 62									130	
Ausführung mit Isolier- oder Balgteil										
	IT/BT									
Gewicht ¹⁾ ohne Antrieb	kurz	10	11	12	22	26	40	45	80	160
	lang	14	15	16	26	30	44	49	88	168

Die angegebenen Gewichte entsprechen einer spezifischen Standardvariante des Geräts. Gewichte fertig konfigurierter Geräte können je nach Ausführung (Werkstoff, Garniturausführung usw.) abweichen.

4 Lieferung und innerbetrieblicher Transport

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

4.1 Lieferung annehmen

Nach Erhalt der Ware folgende Schritte durchführen:

- Lieferumfang kontrollieren. Angaben auf dem Typenschild des Ventils mit Lieferschein abgleichen. Einzelheiten zum Typenschild vgl. Kap. 2.
- 2. Lieferung auf Schäden durch Transport prüfen. Transportschäden an SAMSON und Transport-unternehmen (vgl. Lieferschein) melden.
- 3. Gewicht und Abmaße der zu transportierenden und zu hebenden Einheiten ermitteln, um ggf. entsprechende Hebezeuge und Lastaufnahmemittel auszuwählen. Vgl. Transportdokumente und Kap. 3.5.

4.2 Ventil auspacken

Folgende Abläufe einhalten:

- ⇒ Stellventil erst unmittelbar vor dem Anheben zum Einbau in die Rohrleitung auspacken.
- ⇒ Für den innerbetrieblichen Transport das Stellventil auf der Palette oder im Transportbehälter lassen.
- ⇒ Die Schutzkappen am Ein- und Ausgang des Ventils erst direkt vor dem Einbau in die Rohrleitung entfernen. Sie schützen das Ventil vor Beschädigungen durch eindringende Fremdkörper.
- ⇒ Verpackung sachgemäß entsprechend den lokalen Vorschriften entsorgen. Dabei Verpackungsmaterialien nach Sorten trennen und dem Recycling zuführen.

4.3 Ventil transportieren und heben

▲ GEFAHR

Gefahr durch Herunterfallen schwebender Lasten!

- ⇒ Nicht unter schwebenden Lasten aufhalten.
- ⇒ Transportwege absichern.

A WARNUNG

Umkippen der Hebezeuge und Beschädigung der Lastaufnahmeeinrichtungen durch Überschreiten der Hebekapazität!

⇒ Nur zugelassene Hebezeuge und Lastaufnahmeeinrichtungen verwenden, deren Hebekapazität mindestens dem Gewicht des Ventils entspricht, ggf. einschließlich des Antriebs und der Verpackung.

A WARNUNG

Verletzungsgefahr durch Kippen des Stellventils!

- ⇒ Schwerpunkt des Stellventils beachten.
- ⇒ Stellventil gegen Umkippen und Verdrehen sichern.

▲ WARNUNG

Verletzungsgefahr durch falsches Heben ohne Hebezeuge!

Beim Heben des Stellventils ohne Hebezeuge kann es je nach Gewicht des Stellventils zu Verletzungen vor allem im Rumpfbereich kommen.

⇒ Die am Installationsort gültigen Vorschriften zum Arbeitsschutz beachten.

• HINWEIS

Beschädigung des Stellventils durch unsachgemäße Befestigung der Anschlagmittel!

Die Hebeöse/Ringschraube an SAMSON-Antrieben dient nur zur Montage und Demontage des Antriebs sowie zum Heben des Antriebs ohne Ventil. Dieser Anschlagpunkt ist nicht zum Heben eines vollständigen Stellventils vorgesehen.

- ⇒ Beim Anheben des Stellventils sicherstellen, dass die gesamte Last von den Anschlagmitteln getragen wird, die am Ventilgehäuse befestigt sind.
- ⇒ Lasttragende Anschlagmittel nicht an Antrieb, Handrad oder sonstigen Bauteilen befestigen.
- ⇒ Bedingungen für das Heben beachten, vgl. Kap. 4.3.2.

☆ Tipp

Bei Ausführungen mit Innengewinde am oberen Deckel eines SAMSON-Antriebs kann statt der Ringschraube ein Anschlagwirbel eingeschraubt werden (vgl. zugehörige Antriebsdokumentation).

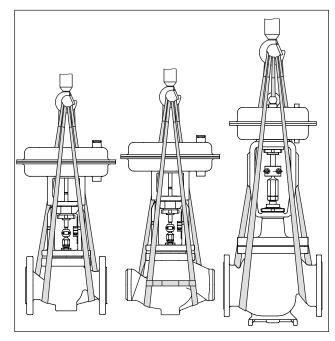
Der Anschlagwirbel darf, im Gegensatz zur Hebeöse/Ringschraube, zum Aufrichten eines vollständigen Stellventils genutzt werden. Beim Heben eines vollständigen Stellventils darf das Anschlagmittel zwischen dem Anschlagwirbel und dem Tragmittel keine Last aufnehmen. Dieses Anschlagmittel dient ausschließlich der Sicherung gegen ein Umschlagen beim Heben.

Tipp

Auf Anfrage stellt der After Sales Service eine umfassende Transport- und Hebeanweisung zur Verfügung.

4.3.1 Ventil transportieren

Das Stellventil kann mithilfe von Hebezeugen wie z. B. einem Kran oder Gabelstapler transportiert werden.


- ⇒ Stellventil für den Transport auf der Palette oder im Transportbehälter lassen.
- ⇒ Transportbedingungen einhalten.

Transportbedingungen

- Stellventil vor äußeren Einflüssen wie z. B. Stößen schützen.
- Korrosionsschutz (Lackierung, Oberflächenbeschichtung) nicht beschädigen. Auftretende Beschädigungen sofort beseitigen.
- Verrohrungen und eventuell vorhandene Anbaugeräte vor Beschädigungen schützen.
- Stellventil vor Nässe und Schmutz schützen.
- Bei Stellventilen in der Normalausführung beträgt die zulässige Transporttemperatur -4 bis +149 °F (-20 bis +65 °C).

i Info

Transporttemperaturen für andere Ausführungen sind auf Anfrage beim After Sales Service erhältlich.

Bild 18: Hebepunkte am Stellventil: bis DN 150/NPS 6 mit Flanschen (links) und mit Anschweißenden (Mitte) · ab DN 150/NPS 6 mit zusätzlicher Hebeöse am Antrieb (rechts)

4.3.2 Ventil heben

Vgl. Bild 18

Für den Einbau des Stellventils in die Rohrleitung können größere Ventile mithilfe von Hebezeugen wie z.B. einem Kran oder Gabelstapler angehoben werden.

Bedingungen für das Heben

- Als Tragmittel einen Haken mit Sicherheitsverschluss verwenden, damit die Anschlagmittel beim Heben und Transportieren nicht vom Haken rutschen können.
- Anschlagmittel gegen Verrutschen und Abrutschen sichern.
- Anschlagmittel so befestigen, dass sie nach dem Einbau in die Rohrleitung wieder entfernt werden können.
- Schwingen und Kippen des Stellventils vermeiden.
- Bei Arbeitsunterbrechungen Last nicht über längeren Zeitraum am Hebezeug in der Luft schweben lassen.

Lieferung und innerbetrieblicher Transport

- Sicherstellen, dass die Achse der Rohrleitung beim Heben stets horizontal und die Achse der Kegelstange stets vertikal liegt.
- Sicherstellen, dass bei Stellventilen mit Hebeöse/Ringschraube am Antrieb das zusätzliche Anschlagmittel zwischen Anschlagpunkt am Antrieb und Tragmittel keine Last aufnimmt. Dieses Anschlagmittel dient ausschließlich der Sicherung gegen ein Umschlagen beim Heben.
 Vor dem Anheben des Ventils dieses Anschlagmittel straff vorspannen.

Ausführung mit Flanschen

- 1. Je eine Hebeschlinge an den Flanschen des Gehäuses und am Tragmittel (z. B. Haken) des Krans oder Gabelstaplers anschlagen.
- 2. **Bei vorhandenem Anschlagpunkt am Antrieb:** Weitere Hebeschlinge am Anschlagpunkt des Antriebs und am Tragmittel anschlagen.
- 3. Stellventil vorsichtig anheben. Prüfen, ob Lastaufnahmeeinrichtungen halten.
- 4. Stellventil mit gleichmäßiger Geschwindigkeit zum Einbauort bewegen.
- 5. Stellventil in die Rohrleitung einbauen, vgl. Kap. 5.
- 6. Nach Einbau in die Rohrleitung: Prüfen, ob die Flansche fest verschraubt sind und das Ventil in der Rohrleitung hält.
- 7. Hebeschlingen entfernen.

Ausführung mit Anschweißenden

- 1. Je eine Hebeschlinge an den Anschweißenden des Gehäuses und am Tragmittel (z. B. Haken) des Krans oder Gabelstaplers anschlagen.
- 2. Die am Gehäuse angeschlagenen Hebeschlingen untereinander mit einem Verbinder gegen Abrutschen sichern.
- 3. **Bei vorhandenem Anschlagpunkt am Antrieb:** Weitere Hebeschlinge am Anschlagpunkt des Antriebs und am Tragmittel anschlagen.
- 4. Stellventil vorsichtig anheben. Prüfen, ob Lastaufnahmeeinrichtungen halten.
- 5. Stellventil mit gleichmäßiger Geschwindigkeit zum Einbauort bewegen.
- 6. Stellventil in die Rohrleitung einbauen, vgl. Kap. 5.
- 7. Nach Einbau in die Rohrleitung: Prüfen, ob Schweißnähte halten.
- 8. Hebeschlingen entfernen.

Ausführung mit Anschraubenden

- 1. Je eine Hebeschlinge an den Anschschraubenden des Gehäuses und am Tragmittel (z. B. Haken) des Krans oder Gabelstaplers anschlagen.
- 2. Die am Gehäuse angeschlagenen Hebeschlingen untereinander mit einem Verbinder gegen Abrutschen sichern.
- 3. **Bei vorhandenem Anschlagpunkt am Antrieb:** Weitere Hebeschlinge am Anschlagpunkt des Antriebs und am Tragmittel anschlagen.
- 4. Stellventil vorsichtig anheben. Prüfen, ob Lastaufnahmeeinrichtungen halten.
- 5. Stellventil mit gleichmäßiger Geschwindigkeit zum Einbauort bewegen.
- 6. Stellventil in die Rohrleitung einbauen, vgl. Kap. 5.
- 7. Nach Einbau in die Rohrleitung: Prüfen, ob die Verschraubungen halten.
- 8. Hebeschlingen entfernen.

4.4 Ventil lagern

• HINWEIS

Beschädigungen am Ventil durch unsachgemäße Lagerung!

- ⇒ Lagerbedingungen einhalten.
- ⇒ Längere Lagerung vermeiden.
- ⇒ Bei abweichenden Lagerbedingungen und längerer Lagerung Rücksprache mit SAMSON halten.

i Info

SAMSON empfiehlt, bei längerer Lagerung das Stellventil und die Lagerbedingungen regelmäßig zu prüfen.

Lagerbedingungen

- Stellventil vor äußeren Einflüssen wie z. B. Stößen schützen.
- In Lagerposition das Stellventil gegen Verrutschen oder Umkippen sichern.
- Korrosionsschutz (Lackierung, Oberflächenbeschichtung) nicht beschädigen. Auftretende Beschädigungen sofort beseitigen.
- Stellventil vor Nässe und Schmutz schützen und bei einer relativen Luftfeuchte von <75 % lagern. In feuchten Räumen Kondenswasserbildung verhindern. Ggf. Trockenmittel oder Heizung einsetzen.

- Sicherstellen, dass die umgebende Luft frei von Säuren oder anderen korrosiven und aggressiven Medien ist.
- Bei Stellventilen in der Normalausführung beträgt die zulässige Lagertemperatur -4 bis +149 °F (-20 bis +65 °C). Lagertemperaturen für andere Ausführungen sind auf Anfrage beim After Sales Service erhältlich.
- Keine Gegenstände auf das Stellventil legen.
- Bei Lagerzeiten >4 Monaten empfiehlt SAMSON eine senkrechte Lagerposition mit Antrieb oben für folgende Stellventile:
 - ≥DN 100 bei Ausführungen mit Druckentlastung
 - ≥DN 150 bei Ausführungen ohne Druckentlastung
 - ≥NPS 4 bei Ausführungen mit Druckentlastung
 - ≥NPS 6 bei Ausführungen ohne Druckentlastung

Besondere Lagerbedingungen für Elastomere

Beispiel für Elastomere: Antriebsmembran

- Um die Form zu erhalten und Rissbildung zu vermeiden, Elastomere nicht aufhängen oder knicken.
- SAMSON empfiehlt für Elastomere eine Lagertemperatur von 59 °F (15 °C).
- Elastomere getrennt von Schmiermitteln, Chemikalien, Lösungen und Brennstoffen lagern.

Auf Anfrage stellt der After Sales Service eine umfassende Anweisung für die Lagerung zur Verfügung.

5 Montage

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

5.1 Einbaubedingungen

Bedienerebene

Die Bedienerebene für das Stellventil ist die frontale Ansicht auf alle Bedienelemente des Stellventils inklusive Anbaugeräten aus Perspektive des Bedienungspersonals.

Der Anlagenbetreiber muss sicherstellen, dass das Bedienungspersonal nach Einbau des Geräts alle notwendigen Arbeiten gefahrlos und leicht zugänglich von der Bedienerebene aus ausführen kann.

Rohrleitungsführung

Die Ein-und Auslauflängen (vgl. Tab. 15) sind abhängig von verschiedenen Variablen und Prozessbedingungen und verstehen sich als Empfehlung. Bei signifikanter Unterschreitung dieser von SAMSON empfohlenen Längen Rücksprache mit SAMSON halten.

Für eine einwandfreie Funktion des Stellventils, folgende Bedingungen sicherstellen:

- ⇒ Empfohlene Ein- und Auslauflängen beachten, vgl. Tab. 15. Bei abweichenden Ventilbedingungen und Mediumszuständen Rücksprache mit SAMSON halten.
- ⇒ Stellventil schwingungsarm und ohne mechanische Spannungen einbauen. Abschnitte "Einbaulage" und "Abstützung und Aufhängung" in diesem Kapitel beachten.
- ⇒ Stellventil so einbauen, dass ausreichend Platz zum Auswechseln von Antrieb und Ventil sowie für Instandhaltungs- und Reparaturarbeiten vorhanden ist.

Tabelle 15: Ein- und Auslauflängen

	a x NPS a x DN b x NPS b x DN Durchgangsventil	Q Durchfluss a Einlauflänge b Auslaufläng	
Mediumszustand	Ventilbedingungen	Einlauflänge a	Auslauflänge b
gasförmig	Ma ≤ 0,3	2	4
gasförmig	0,3 ≤ Ma ≤ 0,7	2	10
	Ma ≤ 0,3 ¹)	2	4
dampfförmig	0,3 ≤ Ma ≤ 0,7 ¹)	2	10
	Nassdampf (Kondensatanteil >5 %)	2	20
	Kavitationsfrei / w < 10 m/s	2	4
	Schallkavitation / w ≤ 3 m/s	2	4
flüssig	Schallkavitation / 3 < w < 5 m/s	2	10
	Kritische Kavitation / w ≤ 3 m/s	2	10
	Kritische Kavitation / 3 < w < 5 m/s	2	20
Flashing	-	2	20
mehrphasig	-	10	20

¹⁾ kein Nassdampf

Einbaulage

SAMSON empfiehlt, das Stellventil generell so einzubauen, dass der Antrieb senkrecht nach oben zeigt.

Bei folgenden Ausführungen/Verwendungen **muss** das Stellventil mit Antrieb nach oben eingebaut werden:

- Nennweiten ab DN 100
- Nennweiten ab NPS 4
- Ventile mit Isolier- oder Balgteil für tiefe Temperaturen unter 14 °F (-10 °C)
- ⇒ Bei Abweichungen von dieser Einbaulage, Rücksprache mit SAMSON halten.

Abstützung und Aufhängung

i Info

Auswahl und Umsetzung einer geeigneten Abstützung oder Aufhängung des eingebauten Stellventils sowie der Rohrleitung liegen in der Verantwortung des Anlagenbauers.

Je nach Ausführung und Einbaulage des Stellventils ist eine Abstützung oder Aufhängung des Ventils, des Antriebs und der Rohrleitung erforderlich.

Bei Ventilen, bei denen der Antrieb nicht senkrecht nach oben zeigt, muss das Ventil mit einer geeigneten Abstützung oder Aufhängung ausgestattet werden.

Anbaugeräte

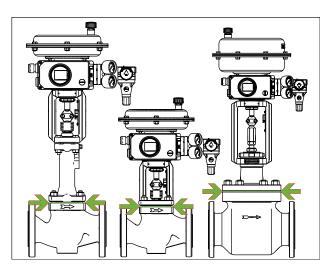
⇒ Beim Anschließen von Anbaugeräten sicherstellen, dass diese von der Bedienerebene aus gefahrlos und leicht zugänglich bedient werden können.

Entlüftung

Entlüftungen werden in die Abluftanschlüsse pneumatischer und elektropneumatischer Geräte geschraubt, um zu gewährleisten, dass entstehende Abluft nach außen abgegeben werden kann (Schutz vor Überdruck im Gerät). Des Weiteren ermöglichen Entlüftungen das Ansaugen von Luft (Schutz vor Unterdruck im Gerät).

⇒ Entlüftung auf die Seite führen, die der Bedienerebene abgewendet ist.

5.2 Montage vorbereiten


Vor der Montage folgende Bedingungen sicherstellen:

- Das Ventil ist sauber.
- Das Ventil und alle Anbaugeräte inklusive Verrohrungen sind unbeschädigt.
- Die Ventildaten auf dem Typenschild (Typ, Nennweite, Material, Nenndruck und Temperaturbereich) stimmen mit den Anlagenbedingungen überein (Nennweite und Nenndruck der Rohrleitung, Mediumstemperatur usw.). Einzelheiten zum Typenschild vgl. Kap. 2.
- Gewünschte oder erforderliche zusätzliche Einbauten (vgl. Kap. 3.3) sind installiert oder soweit vorbereitet, wie es vor der Montage des Ventils erforderlich ist.

9 HINWEIS

Beschädigung des Stellventils durch falsche Isolierung!

- ⇒ Stellventile nur bis zum Deckelflansch der Ventilgehäuse einisolieren, vgl. Bild 19. Dies gilt auch für Ausführungen mit Balg- oder Isolierteil bei Mediumstemperaturen unter 32 °F (0 °C) oder über 428 °F (220 °C). Wird das Isolierteil mit einisoliert, verliert es seine Funktion!
- ⇒ Ventile, die nach NACE MR 0175 eingebaut werden und deren Schrauben und Muttern nicht für Sauergasumgebung geeignet sind, nicht einisolieren.

Bild 19: *Grenze der Einisolierung von Stellventilen (Beispieldarstellung)*

Folgende vorbereitende Schritte durchführen:

- ⇒ Für die Montage erforderliches Material und Werkzeug bereitlegen.
- ⇒ Rohrleitungen durchspülen.

i Info

Die Reinigung der Rohrleitungen in der Anlage liegt in der Verantwortung des Anlagenbetreibers.

- ⇒ Bei Dampfanwendungen die Leitungen trocknen. Feuchtigkeit beschädigt die Ventilinnenteile.
- ⇒ Ggf. vorhandenes Manometer auf fehlerfreie Funktion prüfen.
- ⇒ Wenn Ventil und Antrieb bereits zusammengebaut sind, Schraubverbindungen auf korrekte Anzugsmomente prüfen. Durch den Transport können sich Bauteile lösen.

5.3 Gerät montieren

Im Folgenden werden die Tätigkeiten aufgeführt, die für die Montage und vor der Inbetriebnahme des Ventils notwendig sind.

• HINWEIS

Beschädigung des Ventils und Leckagen durch zu hohe oder zu niedrige Anzugsmomente!

Die Bauteile des Stellventils müssen mit bestimmten Drehmomenten angezogen werden. Zu fest angezogene Bauteile unterliegen übermäßigem Verschleiß. Zu leicht angezogene Bauteile können Leckagen verursachen.

⇒ Anzugsmomente beachten, vgl. ► AB 0100.

• HINWEIS

Beschädigung des Ventils durch ungeeignete Werkzeuge!

Für Arbeiten am Ventil werden bestimmte Werkzeuge benötigt.

⇒ Nur von SAMSON zugelassene Werkzeuge verwenden, vgl. ► AB 0100.

5.3.1 Externe Verdrehsicherung montieren

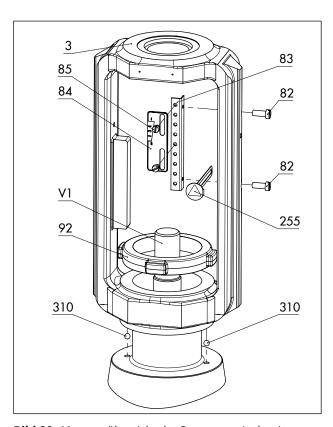
Vor der Montage des Antriebs muss in Einzelfällen die externe Verdrehsicherung an der Kegelstange montiert werden. Dazu muss das Ventil geschlossen sein. Für SAMSON-Antriebe Typ 3271 und Typ 3277 mit Handverstellung Typ 3273 ist zur Montage der Verdrehsicherung die Einbau- und Bedienungsanleitung des Handrads zu beachten, vgl. ▶ EB 8312-X.

Standardausführung für Ventile der Bauart 240 ab DN 200/NPS 8

Vgl. Bild 20 und Bild 21

- 1. Kugeln (310) in die Vertiefungen im Oberteil einlegen.
- 2. Joch (3) so auf das Oberteil aufsetzen, dass die Kugeln in den Vertiefungen des Jochs einrasten.
- 3. Joch (3) mit Schlagmutter (92) befestigen.
- 4. Lasche (83) und gegebenenfalls Warnhinweisschild (255) mit Schrauben (82) am Joch festschrauben.
- 5. Hubschild (84) mit Schrauben (85) gemäß Tab. 17 an der Lasche (83) vorpositionieren.
- 6. Gleitscheiben (309) ohne Schmiermittel mit der Fase voran in die Vertiefungen der Schellenhälften (301) bis zum Anschlag mit einem Schonhammer oder einer Hebelpresse eindrücken. Aufgeschobenes Material entfernen.
- 7. Gewinde der Stange (9) und der Schrauben (303) mit Schmiermittel (114) leicht fetten.

• HINWEIS


Funktionsbeeinträchtigung durch falsch aufgetragene Schmiermittel!

- ⇒ Auf die Gewinde der Schellenhälften (301) und der Kegelstange keine Schmiermittel auftragen.
- 8. Schellenhälften (301) und Stange (9) gemäß Tab. 17 an der Kegelstange vorpositionieren und mit Schrauben (303) und Scheiben (304) handfest verschrauben.
- 9. Antrieb montieren, vgl. Kap. 5.3.2.
- 10. Die Stange (9) hochdrehen, bis der Kopf der Stange an der ausgefahrenen Antriebsstange anliegt.
- 11. Antriebsstange hochfahren, um die Stange (9) zu entlasten.
- 12. Schrauben (303) schrittweise über Kreuz anziehen. Anzugsmomente beachten, vgl. Tab. 16.

Tabelle 16: Anzugsmomente

Schraubengröße	Anzugsmoment [Nm]
M12	50
M16	121

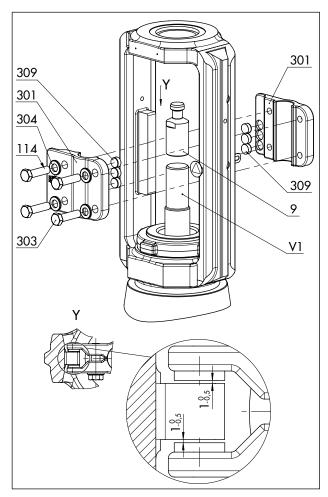

- 13. Folgende Resultate überprüfen und sicherstellen:
 - Zwischen den Gleitscheiben und ihrer Auflage am Joch ist ein nomineller Spalt zwischen 0,5 und 1 mm auf jeder Seite (vgl. Detail Y in Bild 21).
 - Die Verdrehsicherung klemmt nicht auf dem Joch und lässt sich in Hubrichtung frei verfahren.
- 14. Antriebsstange wieder herunterfahren und Kupplungsschelle montieren.

Bild 20: Montageübersicht der Baugruppe Joch mit Hubschild in der Standardausführung

3	Joch	92	Schlagmutter
82	Schrauben	255	Warnhinweisschild
83	Lasche	310	Kugel
84	Hubschild	V1	Kegelstange
85	Schrauben		

Montage

Bild 21: Montageübersicht der Verdrehsicherung in der Standardausführung

9 Stange 304 Scheiben 114 Schmiermittel Gleitmo 309 Gleitscheiben 1763 V V1 Kegelstange

301 Schellen

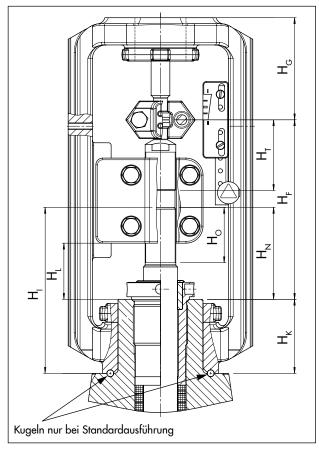

303 Schrauben

Tabelle 17: Anbaumaße für pneumatische Antriebe Typ 3271 und Typ 3277 · Maßbild vgl. Bild 22

Antrieb	Hub		pan- Intrieb	Maß bei geschlossenem Ventil [mm]							
[cm²]	[mm]	[%]	[mm]	H _F	H _G	Hı	Hĸ	HL	H _N	Ho	Нт
DN 2002	50/NPS 8.	10 bis Sit	zbohrung	200 · Stan	dardausfü	hrung	1	1			
355 750	30	0	0	241	90		87	61	108	65	120
1000 1400-60	30	0	0	211	120			66			83
	30	75	45	211	120	195		66			83
	60	0	0	166	165			52			55
	60	25	15	181	150			52			55
1400-120	15	87,5	105	236	180			61			115
	30	0	0	191	225			48			76
	30	75	90	221	195			61			100
	60	0	0	308	255			61			185
	60	50	60	191	225			48			76
	30	0	0	191	255			48			76
2800	30	100	120	221	195			61			100
5600	60	0	0	308	255			61			185
	60	75	90	191	225			48			76
Antrieb	Hub		pan- Intrieb	Maß bei geschlossenem Ventil [mm]							
[cm²]	[mm]	[%]	[%] [mm]		H _G	H,	H _K	HL	H _N	H _o	Нт
DN 250/N	PS 10 Sitz	bohrung 2	50 und DN	300500	NPS 122	0 · Standa	rdausführ	ung			
	30	0	0	281	135						121
1000	30	75	45	296	120	237	87		150	110	135
1400-60	60	0	0	251	165			100			91
	60	25	15	266	150						91
	60	0	0	308	255						145
1400-120	60	50	60	338	225						175
1700-120	120	0	0	278	285						FA ¹⁾ =115 FE ²⁾ =86
	60	0	0	308	255						145
2800	60	75	90	338	225						175
5600	120	0	0	248	315						FE ²⁾ =86
ļ	120	25	30	278	285						115

¹⁾ FA = Antriebsstange durch Federkraft ausfahrend

²⁾ FE = Antriebsstange durch Federkraft einfahrend

Bild 22: Maßbild der Anbaumaße für pneumatische Antriebe Typ 3271 und Typ 3277

5.3.2 Ventil und Antrieb zusammenbauen

A WARNUNG

Verletzungsgefahr durch vorgespannte Federn in pneumatischen Antrieben!

Stellventile, die mit Antrieben mit vorgespannten Antriebsfedern aussgestattet sind, stehen unter mechanischer Spannung. Diese Stellventile sind bei Kombination mit pneumatischen SAMSON-Antrieben Typ 3271/3277 erkennbar an den verlängerten Schrauben an der Unterseite des Antriebs.

⇒ Vor Arbeiten am Antrieb, die ein Öffnen des Antriebs erfordern oder bei blockierter Antriebsstange Kraft der Federvorspannung aufheben, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr bei unsachgemäßer Demontage der unter Spannung stehenden Verdrehsicherung!

Wenn der Antrieb am Ventil einsatzbereit montiert ist, stehen die Schellen (301) der Verdrehsicherung an der Kegelstange unter Spannung.

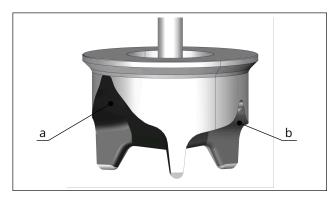
- ⇒ Bei Montage- und Demontagearbeiten gemäß den Anleitungen dieser EB vorgehen.
- ⇒ Bei bestehender Kraftübertragung zwischen Antriebsstange und Stange (9) durch die pneumatische Hilfsenergie und/oder Federkraft des Antriebs, die Schrauben (303) der Verdrehsicherung nicht lösen.
- ⇒ Verdrehsicherung der Kegelstange nur bei demontiertem bzw. kraftentkoppeltem Antrieb demontieren.

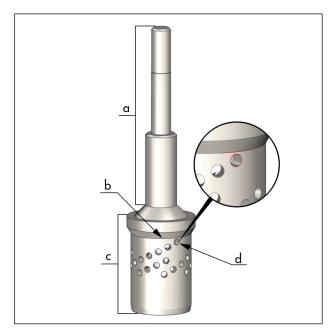
SAMSON-Stellventile werden je nach Ausführung mit bereits am Ventil montiertem Antrieb geliefert oder Ventil und Antrieb werden separat geliefert. Bei separater Lieferung müssen Ventil und Antrieb am Einbauort zusammengebaut werden.

Ausführungen mit V-Port-Kegel

Um optimale Strömungsverhältnisse innerhalb des Ventils zu gewährleisten, muss ein V-Port-Kegel immer so montiert werden, dass das zuerst öffnende V-Port-Segment Richtung Ventilausgang zeigt. Dies ist das größte der drei V-Port-Segmente, vgl. Bild 23.

- ⇒ Vor dem Anbau des Antriebs das V-Port-Segment identifizieren, das als Erstes öffnet, wenn der Kegel aus dem Sitz gehoben wird.
- ⇒ Beim Anbau des Antriebs sicherstellen, dass das V-Port-Segment, das als Erstes öffnet, zum Ventilausgang zeigt.




Bild 23: V-Port-Kegel (Beispieldarstellung)

- a 1x V-Port-Segment groß: Öffnet als erstes, wenn der Kegel aus dem Sitz gehoben wird
- b 2x V-Port-Segment klein

Ausführungen mit Lochkegel

Lochkegel mit gleichprozentiger Kennlinie können nahe der Dichtkante nur eine Bohrung aufweisen. Je nach Nennweite des Ventils sind die Lochbilder unterschiedlich ausgeführt und teilweise unsymmetrisch angeordnet. Das Medium im Ventil entweicht durch die Löcher, sobald der Kegel aus dem Sitz gehoben wird. Um optimale Strömungsverhältnisse innerhalb des Ventils zu gewährleisten, muss ein Lochkegel immer so montiert werden, dass die zuerst öffnende Bohrung Richtung Ventilausgang zeigt, vgl. Bild 24.

- ⇒ Vor dem Anbau des Antriebs das Lochbild des Lochkegels prüfen und die der Dichtkante am nächsten liegende Bohrung identifizieren. Diese öffnet als Erstes, wenn der Kegel aus dem Sitz gehoben wird.
- ⇒ Beim Anbau des Antriebs sicherstellen, dass die Bohrung, die als Erstes öffnet, zum Ventilausgang zeigt.

Bild 24: Lochkegel (Beispieldarstellung)

- a Kegelstange
- b Dichtkante
- c Lochkegel
- d zur Dichtkante nächstliegende Bohrung

Anbaumaße für Ventile bis DN 150/NPS 6

Die folgenden Anbaumaße gelten für Ventile Typ 3241 mit Nennweite < NPS 8/< DN 200:

Antriebsgröße	Hub in mm	Maß H _G in mm	
120 bis 750v2 cm ²	15	75	
355v2 bis 1400-60 cm ²	30	90	

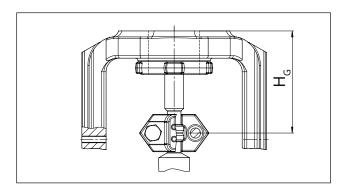


Bild 25: Stichmaß Kupplung/Joch

Anbaumaße für Ventile Typ 3241 mit Nennweite ≥NPS 8/≥DN 200 vgl. Tab. 17.

Antrieb anbauen

⇒ Zur Montage des Antriebs vorgehen wie in der zugehörige Antriebsdokumentation beschrieben.

Hubschild ausrichten

Nach der Montage des Antriebs muss das Hubschild ausgerichtet werden. Dafür die 0 auf der Skala des Hubschilds auf die Spitze der Kupplungsschelle ausrichten (vgl. Bild 22).

- 1. Ventil in Schließstellung bringen.
- 2. Schrauben am Hubschild lösen.
- 3. Hubschild ausrichten.
- 4. Hubschild mit Schrauben fixieren.

5.4 Ventil in die Rohrleitung einbauen

• HINWEIS

Beschädigung des Ventils durch nicht fachgerecht ausgeführte Arbeiten!

Die Auswahl von Schweißmethodik und -prozess sowie die Durchführung von Schweißarbeiten am Ventil liegen in der Verantwortung des Anlagenbetreibers bzw. der ausführenden Fachfirma. Dies schließt z. B. eventuell erforderliche Wärmebehandlungen des Ventils mit ein.

- ⇒ Schweißarbeiten von Schweißfachpersonal ausführen lassen.
- ⇒ Beim Einschweißen beschichteter Ventile in die Rohrleitung und/oder einer etwaigen Wärmeeinbringung die Temperaturbeständigkeit des Beschichtungssystems (z. B. des Lacks) beachten. Die Nummer des eingesetzten Beschichtungssystems ist den Auftragsdokumenten zu entnehmen und die entsprechende Temperaturbeständigkeit der Broschüre ➤ WA 268.

• HINWEIS

Vorzeitiger Verschleiß und Leckagen durch unzureichende Abstützung oder Aufhängung!

⇒ Ausreichende Abstützungen oder Aufhängungen an geeigneten Punkten verwenden.

Ausführung mit Flanschen

- Absperrventile am Ein- und Ausgang des betroffenen Anlagenteils in der Rohrleitung für die Dauer des Einbaus schließen.
- 2. Rohrleitungsabschnitt im betroffenen Anlagenteil für den Einbau des Ventils präparieren.
- 3. Schutzkappen auf Ventilöffnungen vor dem Einbau entfernen.
- 4. Ventil mit geeignetem Hebezeug an den Einbauort heben, vgl. Kap. 4.3.2. Dabei die Durchfluss-

- richtung des Ventils beachten. Ein Pfeil auf dem Ventil zeigt die Durchflussrichtung an.
- 5. Sicherstellen, dass die korrekten Flanschdichtungen verwendet werden.
- 6. Rohrleitung spannungsfrei mit Ventil verschrauben.
- 7. Ggf. Abstützungen oder Aufhängungen installieren.

Ausführung mit Anschweißenden

- 1. Absperrventile am Ein- und Ausgang des betroffenen Anlagenteils in der Rohrleitung für die Dauer des Einbaus schließen.
- 2. Rohrleitungsabschnitt im betroffenen Anlagenteil für den Einbau des Ventils präparieren.
- 3. Schutzkappen auf Ventilöffnungen vor dem Einbau entfernen.
- 4. Ventil mit geeignetem Hebezeug an den Einbauort heben, vgl. Kap. 4.3.2. Dabei die Durchflussrichtung des Ventils beachten. Ein Pfeil auf dem Ventil zeigt die Durchflussrichtung an.
- 5. Antriebsstange vollständig einfahren, um den Kegel beim Schweißen vor Funken zu schützen.
- 6. Ventil spannungsfrei in die Rohrleitung einschweißen.
- 7. Ggf. Abstützungen oder Aufhängungen installieren.

Ausführung mit Anschraubenden

- 1. Absperrventile am Ein- und Ausgang des betroffenen Anlagenteils in der Rohrleitung für die Dauer des Einbaus schließen.
- 2. Rohrleitungsabschnitt im betroffenen Anlagenteil für den Einbau des Ventils präparieren.
- 3. Schutzkappen auf Ventilöffnungen vor dem Einbau entfernen.
- 4. Ventil mit geeignetem Hebezeug an den Einbauort heben, vgl. Kap. 4.3.2. Dabei die Durchflussrichtung des Ventils beachten. Ein Pfeil auf dem Ventil zeigt die Durchflussrichtung an.
- 5. Antriebsstange vollständig einfahren, um den Kegel beim Schweißen vor Funken zu schützen.
- 6. Ventil spannungsfrei mit der Rohrleitung verschrauben.
- 7. Ggf. Abstützungen oder Aufhängungen installieren.

5.5 Montiertes Ventil prüfen

▲ GEFAHR

Berstgefahr bei unsachgemäßem Öffnen von druckbeaufschlagten Geräten und Bauteilen!

Stellventile und Rohrleitungen sind Druckgeräte, die bei falscher Handhabung bersten können. Geschossartig herumfliegende Bauteile, Bruchstücke und mit Druck freigesetztes Medium können schwere Verletzungen bis hin zum Tod verursachen. Vor Arbeiten an drucktragenden oder druckhaltenden Bauteilen des Stellventils:

- ⇒ Betroffene Anlagenteile und Ventil inklusive Antrieb drucklos setzen. Auch Restenergien sind zu entladen.
- ⇒ Medium aus betroffenen Anlagenteilen und Ventil entleeren.

A WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

A WARNUNG

Gehörschäden und Taubheit durch hohen Schallpegel!

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

⇒ Bei Arbeiten in unmittelbarer N\u00e4he von pneumatischen Anschl\u00fcssen und im Gefahrenbereich von Entl\u00fcftungs\u00f6ffnungen Augenschutz tragen.

A WARNUNG

Verletzungsgefahr durch vorgespannte Federn in pneumatischen Antrieben!

Stellventile, die mit Antrieben mit vorgespannten Antriebsfedern aussgestattet sind, stehen unter mechanischer Spannung. Diese Stellventile sind bei Kombination mit pneumatischen SAMSON-Antrieben Typ 3271/3277 erkennbar an den verlängerten Schrauben an der Unterseite des Antriebs.

⇒ Vor Arbeiten am Antrieb, die ein Öffnen des Antriebs erfordern oder bei blockierter Antriebsstange Kraft der Federvorspannung aufheben, vgl. zugehörige Antriebsdokumentation.

Montage

Um die Funktion des Ventils vor der Inbetriebnahme oder Wiederinbetriebnahme zu testen, folgende Prüfungen durchführen:

5.5.1 Dichtheit

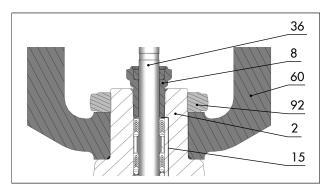
Die Durchführung der Dichtheitsprüfung und die Auswahl des Prüfverfahrens liegt in der Verantwortung des Anlagenbetreibers. Die Dichtheitsprüfung muss den am Aufstellort gültigen nationalen und internationalen Normen und Vorschriften entsprechen!

☼ Tipp

Auf Anfrage unterstützt Sie der After Sales Service bei der Planung und Durchführung einer auf Ihre Anlage abgestimmten Dichtheitsprüfung.

- 1. Ventil schließen.
- Eingangsraum des Ventils langsam mit Prüfmedium beaufschlagen. Schlagartige Drucksteigerung und resultierende hohe Strömungsgeschwindigkeiten können das Ventil beschädigen.
- 3. Ventil öffnen.
- 4. Erforderlichen Prüfdruck beaufschlagen.
- 5. Ventil auf äußere Leckagen prüfen.
- 6. Rohrleitungsabschnitt und Ventil wieder drucklos setzen.
- 7. Falls erforderlich, undichte Stellen nacharbeiten, vgl. nachfolgenden Abschnitt "Stopfbuchspackung nachziehen", und anschließend die Dichtheitsprüfung wiederholen.

Stopfbuchspackung nachziehen


Ein Schild am Joch zeigt an, ob eine nachziehbare Stopfbuchspackung verbaut ist, vgl. Kap. 2.

O HINWEIS

Funktionsbeeinträchtigung des Ventils durch erhöhte Reibung bei zu fest angezogener Gewindebuchse!

- ⇒ Sicherstellen, dass die Kegelstange nach Anziehen der Gewindebuchse weiterhin ruckfrei verfahren werden kann.
- 1. Gewindebuchse schrittweise im Uhrzeigersinn anziehen, bis die Stopfbuchspackung abdichtet.
- 2. Ventil mehrmals vollständig öffnen und schließen.

- 3. Ventil auf äußere Leckagen prüfen.
- 4. Schritt 1 und 2 wiederholen, bis die Stopfbuchspackung vollständig abdichtet.
- ⇒ Falls die nachziehbare Stopfbuchspackung nicht korrekt abdichtet, After Sales Service kontaktieren.

Bild 26: Packung mit Gewindebuchse zentral verschraubt (Beispieldarstellung)

2	Ventiloberteil	36	Kegel- oder Kolbenstange
8	Gewindebuchse	60	Joch
15	Packungssatz	92	Schlagmutter

5.5.2 Hubbewegung

Die Hubbewegung der Antriebsstange muss linear sein und ohne ruckartige Bewegungen erfolgen.

- ⇒ Nacheinander maximales und minimales Stellsignal einstellen, um die Endlagen des Ventils zu prüfen. Dabei die Bewegung der Antriebsstange beobachten.
- ⇒ Anzeige am Hubschild prüfen.

5.5.3 Sicherheitsstellung

Die Sicherheitsstellung kann nur bei Ventilen geprüft werden, die mit einem Antrieb kombiniert sind, der bei Ausfall der Hilfsenergie eine Sicherheitsstellung einnimmt.

Sicherheitsstellung bei pneumatischen Antrieben mit integrierten Federn

- ⇒ Stelldruckleitung schließen.
- ⇒ Prüfen, ob das Ventil die vorgesehene Sicherheitsstellung einnimmt, vgl. Kap. 3.1.

5.5.4 Druckprobe

Die Durchführung der Druckprobe liegt in der Verantwortung des Anlagenbetreibers.

🌣 Tipp

Auf Anfrage unterstützt Sie der After Sales Service bei der Planung und Durchführung einer auf Ihre Anlage abgestimmten Druckprobe.

Bei der Druckprobe folgende Bedingungen sicherstellen:

- Kegel einfahren, um das Ventil zu öffnen.
- Maximal zulässigen Druck für Ventil und Anlage einhalten.

6 Inbetriebnahme

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

A WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung)
 Restenergien des Antriebs (z. B. Federspannung)
 vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

A WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

⇒ Bei Arbeiten in unmittelbarer Nähe von pneumatischen Anschlüssen und im Gefahrenbereich von Entlüftungsöffnungen Augenschutz tragen.

Gehörschäden und Taubheit durch hohen Schallpe-

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

Vor der Inbetriebnahme/Wiederinbetriebnahme folgende Bedingungen sicherstellen:

- Stellventil ist vorschriftsmäßig in die Rohrleitung eingebaut, vgl. Kap. 5.
- Dichtheit und Funktion sind mit positivem Ergebnis auf Fehlerlosigkeit geprüft, vgl. Kap. 5.5.
- Die herrschenden Bedingungen im betroffenen Anlagenteil entsprechen der Auslegung des Stellventils, vgl. Abschnitt "Bestimmungsgemäße Verwendung" in Kap. 1.

Inbetriebnahme/Wiederinbetriebnahme

- 1. Bei großen Differenzen zwischen Umgebungsund Mediumstemperatur oder wenn die Mediumseigenschaften es erfordern, das Ventil vor Inbetriebnahme abkühlen oder aufwärmen.
- 2. Absperrventile in der Rohrleitung langsam öffnen. Langsames Öffnen verhindert, dass schlagartige Drucksteigerung und resultierende hohe Strömungsgeschwindigkeiten das Ventil beschädigen.
- 3. Ventil auf korrekte Funktion prüfen.

7 Betrieb

Sobald die Tätigkeiten zur Inbetriebnahme/Wiederinbetriebnahme abgeschlossen sind, ist das Ventil betriebsbereit.

A WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

▲ WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

A WARNUNG

Gehörschäden und Taubheit durch hohen Schallpegel!

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

⇒ Bei Arbeiten in unmittelbarer N\u00e4he von pneumatischen Anschl\u00fcssen und im Gefahrenbereich von Entl\u00fcftungs\u00f6ffnungen Augenschutz tragen.

7.1 Im Regelbetrieb arbeiten

Bei Antrieben mit Handverstellung muss das Handrad für den normalen Regelbetrieb in der neutralen Stellung stehen.

7.2 Im Handbetrieb arbeiten

Bei Antrieben mit Handverstellung kann das Ventil bei Ausfall der Hilfsenergie manuell geöffnet oder geschlossen werden.

8 Störungen

Gefahrenhinweise, Warnhinweise und Hinweise vgl. Kap. 1

8.1 Fehler erkennen und beheben

Fehler	Mögliche Ursache	Abhilfe		
Antriebs- und Kegelstange bewegt sich trotz Anforderung nicht.	Antrieb ist mechanisch blockiert.	Stellventil außer Betrieb nehmen, vgl. Kap. 10 und anschließend Blockierung aufheben. WARNUNG! Eine blockierte Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) kann sich unerwartet lösen und unkontrolliert bewegen. Dies kann beim Hineingreifen zu Quetschungen führen. Vor dem Versuch eine Blockade der Antriebs- und Kegelstange zu lösen, pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln. Restenergien des Antriebs (Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.		
	Bei pneumatischem Antrieb: Membran im Antrieb defekt	vgl. zugehörige Antriebsdokumentation		
	Bei pneumatischem Antrieb: Stelldruck zu gering	Stelldruck prüfen. Stelldruckleitung auf Dichtheit prüfen.		
Antriebs- und Kegelstange verfährt ruckhaft.	Bei Ausführung mit nach- ziehbarer Stopfbuchspa- ckung ¹⁾ : Stopfbuchspa- ckung zu fest angezogen	Stopfbuchspackung korrekt anziehen, vgl. Abschnitt "Stopfbuchspackung nachziehen" in Kap. 5.5.1.		
Antriebs- und Kegelstange fährt nicht den gesam-	Bei pneumatischem Antrieb: Stelldruck zu gering	Stelldruck prüfen. Stelldruckleitung auf Dichtheit prüfen.		
ten Hub.	Hubbegrenzung aktiv	vgl. zugehörige Antriebsdokumentation		
	Anbaugeräte nicht kor- rekt eingestellt	Einstellungen der Anbaugeräte prüfen.		
Erhöhter Mediumsdurch- fluss bei geschlossenem Ventil (innere Leckage)	Zwischen Sitz und Kegel haben sich Schmutz oder andere Fremdkörper ab- gelagert.	Anlagenteil absperren und Ventil durchspülen.		
	Ventilgarnitur ist verschlissen.	Ventilgarnitur austauschen (vgl. Kap. 9) oder After Sales Service kontaktieren.		
Ventil ist nach außen undicht (äußere Leckage).	Stopfbuchspackung de- fekt	Stopfbuchspackung austauschen (vgl. Kap. 9) oder After Sales Service kontaktieren.		
	Bei Ausführung mit nach- ziehbarer Stopfbuchspa- ckung ¹⁾ : Stopfbuchspa- ckung nicht korrekt ange- zogen	Stopfbuchspackung nachziehen, vgl. Abschnitt "Stopfbuchspackung nachziehen" in Kap. 5.5.1. Bei andauernder Leckage After Sales Service kontaktieren.		
	Bei Ausführung mit Balg- teil: Metallbalg defekt	After Sales Service kontaktieren.		
	Flanschverbindung gelöst oder Gehäusedichtungen verschlissen	Flanschverbindung prüfen. Dichtungen an Flanschverbindung austauschen (vgl. Kap. 9) oder After Sales Service kontaktieren.		

¹⁾ vgl. Kap. 2

i Info

Bei Störungen, die nicht in der Tabelle aufgeführt sind, After Sales Service von SAMSON kontaktieren.

8.2 Notfallmaßnahmen durchführen

Notfallmaßnahmen der Anlage obliegen dem Anlagenbetreiber.

Im Fall einer Störung am Ventil:

- Absperrventile vor und hinter dem Ventil schließen, sodass kein Medium mehr durch das Ventil fließt.
- 2. Fehler diagnostizieren, vgl. Kap. 8.1.
- 3. Fehler beheben, die im Rahmen der in dieser EB beschriebenen Handlungsanleitungen behebbar sind. Für darüber hinaus gehende Fehler After Sales Service kontaktieren.

Wiederinbetriebnahme nach Störungen

Vgl. Kap. 6.

9 Instandhaltung

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

Folgende Dokumente werden zusätzlich für die Instandhaltung des Stellventils benötigt:

- EB für angebauten Antrieb, z. B.:
 - EB 8310-X für pneumatische Antriebe Typ 3271 und Typ 3277
- AB 0100 für Werkzeuge, Anzugsmomente und Schmiermittel

▲ GEFAHR

Berstgefahr bei unsachgemäßem Öffnen von druckbeaufschlagten Geräten und Bauteilen!

Stellventile und Rohrleitungen sind Druckgeräte, die bei falscher Handhabung bersten können. Geschossartig herumfliegende Bauteile, Bruchstücke und mit Druck freigesetztes Medium können schwere Verletzungen bis hin zum Tod verursachen. Vor Arbeiten an drucktragenden oder druckhaltenden Bauteilen des Stellventils:

- ⇒ Betroffene Anlagenteile und Ventil inklusive Antrieb drucklos setzen. Auch Restenergien sind zu entladen.
- ⇒ Medium aus betroffenen Anlagenteilen und Ventil entleeren.

A WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

A WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

A WARNUNG

Gehörschäden und Taubheit durch hohen Schallpegel!

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

▲ WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

⇒ Bei Arbeiten in unmittelbarer Nähe von pneumatischen Anschlüssen und im Gefahrenbereich von Entlüftungsöffnungen Augenschutz tragen. ne Bauteile unterliegen übermäßigem Verschleiß. Zu leicht angezogene Bauteile können Leckagen verursachen.

⇒ Anzugsmomente beachten, vgl. ► AB 0100.

• HINWEIS

Beschädigung des Ventils durch ungeeignete Werkzeuge!

Für Arbeiten am Ventil werden bestimmte Werkzeuge benötigt.

⇒ Nur von SAMSON zugelassene Werkzeuge verwenden, vgl. ► AB 0100.

A WARNUNG

Verletzungsgefahr durch vorgespannte Federn in pneumatischen Antrieben!

Stellventile, die mit Antrieben mit vorgespannten Antriebsfedern aussgestattet sind, stehen unter mechanischer Spannung. Diese Stellventile sind bei Kombination mit pneumatischen SAMSON-Antrieben Typ 3271/3277 erkennbar an den verlängerten Schrauben an der Unterseite des Antriebs.

⇒ Vor Arbeiten am Antrieb, die ein Öffnen des Antriebs erfordern oder bei blockierter Antriebsstange Kraft der Federvorspannung aufheben, vgl. zugehörige Antriebsdokumentation.

9 HINWEIS

Beschädigung des Ventils durch ungeeignete Schmiermittel!

Der Werkstoff des Ventils erfordert bestimmte Schmiermittel. Ungeeignete Schmiermittel können die Oberfläche angreifen und beschädigen.

⇒ Nur von SAMSON zugelassene Schmiermittel verwenden, vgl. ► AB 0100.

A WARNUNG

Verletzungsgefahr durch Mediumsreste im Ventil!

Bei Arbeiten am Ventil können Mediumsreste austreten und abhängig von den Mediumseigenschaften zu Verletzungen (z.B. Verbrühungen, Verätzungen) führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Wenn möglich, Medium aus betroffenen Anlagenteilen und Ventil entleeren.
- ⇒ Schutzkleidung, Schutzhandschuhe, Atemschutz und Augenschutz tragen.

i Info

Das Stellventil wurde von SAMSON vor Auslieferung geprüft.

- Durch Öffnen des Ventils verlieren bestimmte von SAMSON bescheinigte Prüfergebnisse ihre Gültigkeit. Davon betroffen sind z. B. die Prüfung der Sitzleckage und die Dichtheitsprüfung (äußere Dichtheit).
- Mit der Durchführung nicht beschriebener Instandhaltungs- und Reparaturarbeiten ohne Zustimmung des After Sales Service von SAMSON erlischt die Produktgewährleistung.
- Als Ersatzteile nur Originalteile von SAMSON verwenden, die der Ursprungsspezifikation entsprechen.

• HINWEIS

Beschädigung des Ventils und Leckagen durch zu hohe oder zu niedrige Anzugsmomente!

Die Bauteile des Stellventils müssen mit bestimmten Drehmomenten angezogen werden. Zu fest angezoge-

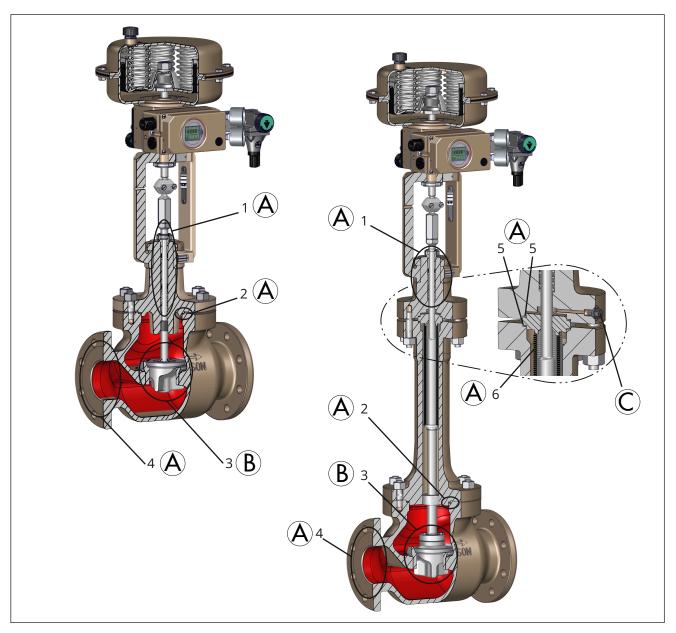
9.1 Periodische Prüfungen

Abhängig von den Einsatzbedingungen muss das Stellventil in bestimmten Intervallen geprüft werden, um bereits vor möglichen Störungen Abhilfe schaffen zu können. Die Erstellung eines entsprechenden Prüfplans obliegt dem Anlagenbetreiber.

∵ Tipp

Auf Anfrage unterstützt Sie der After Sales Service bei der Erstellung eines auf Ihre Anlage abgestimmten Prüfplans.

SAMSON empfiehlt folgende Überprüfungen:


Prüfung	Empfohlene Maßnahme bei negativem Prüfergebnis		
Einprägungen oder Aufprägungen am Stellventil, Aufkleber und Schilder auf Lesbarkeit	Beschädigte, fehlende oder fehlerhafte Schilder oder Aufkleber sofort erneuern.		
und Vollständigkeit prüfen.	Durch Verschmutzung unleserliche Beschriftungen reinigen.		
Äußere Dichtheit 1): Mögliche Leckagezonen	Flanschverbindung (Anzugsmomente) überprüfen.		
am Stellventil auf Leckage untersuchen (vgl. nachfolgendes Bild).	Dichtungen an Flanschverbindungen austauschen. Dafür Stellventil außer Betrieb nehmen, vgl. Kap. 10.		
Bei Ausführungen mit Balgteil: WARNUNG! Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes	Bei Ausführung mit nachziehbarer Stopfbuchspackung ²⁾ : Stopfbuchspackung nachziehen, vgl. Abschnitt "Stopfbuchspackung nachziehen" n Kap. 5.5.1 oder Stopfbuchspackung austauschen, vgl. Kap. 9.4.		
Medium! Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.	Bei defektem Balgteil Stellventil außer Betrieb nehmen, vgl. Kap. 10. Zur Reparatur des Balgteils After Sales Service kontaktieren, vgl. Kap. 12.		
Innere Dichtheit 1) (vgl. nachfolgendes Bild) (ohne Prüfung auf Einhaltung der Leckage-	Anlagenteil absperren und durchspülen, um Schmutz und/oder abgelagerte Fremdkörper zwischen Sitz und Kegel zu entfernen.		
klasse)	Falls erforderlich, Sitz und Kegel austauschen, vgl. Kap. 9.4. Dafür Stellventil außer Betrieb nehmen, vgl. Kap. 10.		
Stellventil auf äußere Beschädigungen über- prüfen, die die ordnungsgemäße Funktion oder gar den sicheren Betrieb des Stellventils beeinträchtigen könnten.	Aufgetretene Beschädigungen sofort beseitigen. Falls erforderlich, Stellventil dafür außer Betrieb nehmen, vgl. Kap. 10.		
Anbaugeräte auf festen Sitz überprüfen.	Anschlüsse der Anbaugeräte nachziehen.		

Instandhaltung

Prüfung	Empfohlene Maßnahme bei negativem Prüfergebnis
Hubbewegung der Antriebs- und Kegelstange auf lineare, ruckfreie Bewegung überprüfen.	Bei Ausführung mit nachziehbarer Stopfbuchspackung ²⁾ : Stopfbuchspackung korrekt anziehen, vgl. Abschnitt "Stopfbuchspackung nachziehen" in Kap. 5.5.1.
	Bei blockierter Antriebs- und Kegelstange Stellventil außer Betrieb nehmen, vgl. Kap. 10 und anschließend Blockierung aufheben. WARNUNG! Eine blockierte Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) kann sich unerwartet lösen und unkontrolliert bewegen. Dies kann beim Hineingreifen zu Quetschungen führen. Vor dem Versuch eine Blockade der Antriebsund Kegelstange zu lösen, pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln. Restenergien des Antriebs (Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.
	Bei Stellventilen, die als Auf/Zu-Ventil eingesetzt werden, empfiehlt SAMSON den Anbau eines Stellungsreglers mit integrierter Diagnose-firmware. Mit der Softwarefunktion "Teilhubtest" kann das Festfressen einer im Normalfall in der Endlage befindlichen Absperrarmatur verhindert werden.
Wenn möglich, Sicherheitsstellung des Ventils durch kurzfristige Unterbrechung der Hilfs- energie überprüfen.	Stellventil außer Betrieb nehmen, vgl. Kap. 10. Anschließend Ursache ermitteln und ggf. beheben, vgl. Kap. 8.

Äußere Leckagen an dynamischen Dichtstellen und innere Leckagen bei Ventilausführungen ohne druckentlasteten Kegel können während des Betriebs mithilfe der Ventildiagnose EXPERTplus diagnostiziert werden. EXPERTplus ist standardmäßig in den digitalen Stellungsreglern (Typ 3730, TROVIS 3730, Typ 3731, TROVIS 3793, TROVIS 3797) integriert.

²⁾ vgl. Kap. 2

Bild 27: Darstellung möglicher Leckagezonen am Stellventil (Beispieldarstellungen: links Ausführung mit Standardoberteil · rechts Ausführung mit Balgteil, stellvertretend auch für Ausführungen mit Isolierteil oder Zwischenstück).

- A äußere Dichtheit
- (B) innere Dichtheit
- Prüfanschluss zur Kontrolle der Balgdichtigkeit
- Kegelstangendurchführung (Packung)
 (dynamische Dichtstelle)
- 2 Gehäusedichtungen (statische Dichtstelle)

- 3 Sitz-Gehäuse und Kegel-Sitz
- 4 Anschluss an die Rohrleitung (statische Dichtstelle)
- 5 Gehäusedichtungen am Balg-/Isolierteil/Zwischenstück (statische Dichtstelle)
- 6 Metallbalg (dynamische Dichtstelle)

9.2 Instandhaltungsarbeiten vorbereiten

- 1. Für die Instandhaltungsarbeiten erforderliches Material und Werkzeug bereitlegen.
- 2. Stellventil außer Betrieb nehmen, vgl. Kap. 10.

Instandhaltung

3. Antrieb vom Ventil demontieren, vgl. zugehörige Antriebsdokumentation.

i Info

Zur Demontage eines Antriebs mit "Antriebsstange ausfahrend und/oder vorgespannten Federn, muss für einen Arbeitsschritt ein gewisser Stelldruck auf den Antrieb gegeben werden, vgl. zugehörige Antriebsdokumentation. Der Stelldruck ist nach diesem Arbeitsschritt wieder abzubauen und die Hilfsenergie muss wieder abgestellt und verriegelt werden.

-ÿ- Tipp

SAMSON empfiehlt, das Ventil zu Instandhaltungsarbeiten aus der Rohrleitung auszubauen, vgl. Kap. 11.


Nach der Vorbereitung können Instandhaltungsund Umrüstarbeiten gemäß der Unterkapitel von Kap. 9.4 durchgeführt werden.

9.3 Ventil nach Instandhaltungsarbeiten montieren

- 1. Antrieb montieren, vgl. zugehörige Antriebsdokumentation.
- 2. Signalbereichsanfang oder -ende einstellen, vgl. zugehörige Antriebsdokumentation.
- 3. Falls das Ventil demontiert wurde, Ventil wieder in die Rohrleitung einbauen, vgl. Kap. 5.
- 4. Stellventil wieder in Betrieb nehmen, vgl. Kap. 6. Voraussetzungen und Bedingungen zur Inbetriebnahme/ Wiederinbetriebnahme beachten!

9.4 Instandhaltungsarbeiten

- ⇒ Vor allen Instandhaltungsarbeiten muss das Stellventil vorbereitet werden, vgl. Kap. 9.2.
- ⇒ Nach allen Instandhaltungsarbeiten ist das Stellventil vor der Wiederinbetriebnahme zu prüfen, vgl. Kap. 5.5.

Bild 28: Stellventil Typ 3241-1 mit pneumatischem Antrieb Typ 3271, Gehäuse bis DN 150/NPS 6

- 1 Gehäuse
- 2 Flansch (Ventiloberteil)
- 4 Sit
- 5 Kegel (mit Kegelstange)
- 8 Gewindebuchse (Packungsmutter)
- 9 Kupplungsmutter
- 10 Kontermutter
- 11 Feder

- 14 Muttei
- 16 Packungsringe
- 17 Flachdichtung (Gehäusedichtung)
- 84 Hubschild
- A Antrieb
- A7 Antriebsstange
- A8 Ringmutter
- A26 Kupplungsschelle

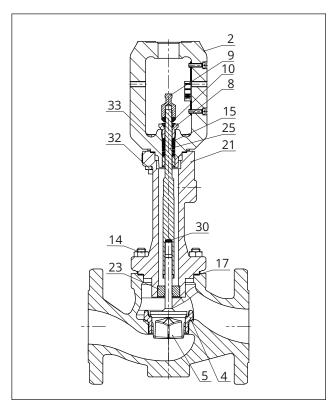


Bild 29: Typ 3241 in Ausführung mit Isolierteil

- 2 Flansch (Ventiloberteil)
- 4 Sitz
- 5 Kegel (mit Kegelstange)
- 8 Gewindebuchse (Packungsmutter)
- 9 Kupplungsmutter
- 10 Kontermutter
- 14 Mutter
- 15 Packungssatz (Stopfbuchspackung)
- 17 Flachdichtung (Gehäusedichtung)
- 21 Isolierteil
- 23 Führungsbuchse
- 25 Kegelstangenverlängerung
- 30 Sicherungsscheiben
- 32 Schraube
- 33 Mutter

9.4.1 Flachdichtung austauschen

9 HINWEIS

Beschädigung des Stellventils durch fehlerhafte Instandhaltung!

- ⇒ Die Flachdichtung darf nur ausgetauscht werden, wenn nachfolgende Bedingungen gleichzeitig erfüllt sind:
 - Die Nennweite des Ventils ist ≤NPS 6.
 - Das Ventil ist ohne Druckentlastung ausgeführt.
- ⇒ Für den Austausch der Flachdichtung bei anderen Ausführungen After Sales Service kontaktieren.

a) Normalausführung

- 1. Gehäusemuttern (14) schrittweise über Kreuz lösen.
- 2. Flansch (2) und Kegel mit Kegelstange (5) vom Gehäuse (1) abheben.
- 3. Flachdichtung (17) entfernen. Dichtflächen im Gehäuse (1) und am Flansch (2) sorgfältig reinigen.
- 4. Neue Flachdichtung (17) in das Gehäuse einlegen.
- 5. Flansch (2) auf das Gehäuse (1) setzen. Dabei Kegel mit Kegelstange (5) senkrecht in das Gehäuse (1) einführen und konzentrisch auf dem Sitz (4) positionieren.

Ausführungen mit V-Port-Kegel: Flansch (2) so auf das Gehäuse setzen, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Flansch (2) so auf das Gehäuse setzen, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt. Vgl. Kap. 5.3.2.

6. Kegel (5) fest in den Sitz (4) drücken. Dabei Flansch (2) mit Gehäusemuttern (14) befestigen. Gehäusemuttern schrittweise über Kreuz anziehen. Anzugsmomente beachten.

b) Ausführung mit Isolier- oder Balgteil

- 1. Gehäusemuttern (14) schrittweise über Kreuz lösen.
- 2. Isolierteil (21) mit Ventiloberteil (2) und Kegel mit Kegelstange (5) vom Gehäuse (1) abheben.
- 3. Flachdichtung (17) entfernen. Dichtflächen im Gehäuse (1) und am Isolierteil (21) sorgfältig reinigen.
- 4. Neue Flachdichtung (17) in das Gehäuse einlegen.
- Isolierteil (21) mit Ventiloberteil (2) auf das Gehäuse (1) setzen. Dabei Kegel mit Kegelstange (5) senkrecht in das Gehäuse (1) einführen und konzentrisch auf dem Sitz (4) positionieren.

Ausführungen mit V-Port-Kegel: Baugruppe so auf das Gehäuse setzen, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Baugruppe so auf das Gehäuse setzen, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt. Vgl. Kap. 5.3.2.

Instandhaltung

6. Kegel (5) fest in den Sitz (4) drücken. Dabei Isolierteil (21) mit Gehäusemuttern (14) befestigen. Gehäusemuttern schrittweise über Kreuz anziehen. Anzugsmomente beachten.

9.4.2 Stopfbuchspackung austauschen

• HINWEIS

Beschädigung des Stellventils durch fehlerhafte Instandhaltung!

- ⇒ Die Stopfbuchspackung darf nur ausgetauscht werden, wenn nachfolgende Bedingungen gleichzeitig erfüllt sind:
 - Die Nennweite des Ventils ist ≤NPS 6.
 - Das Ventil ist ohne Druckentlastung ausgeführt.
 - Das Ventil ist ohne Balgteil ausgeführt.
 - Im Ventil ist die Stopfbuchspackung Standard oder ADSEAL verbaut.
- ⇒ Für den Austausch der Stopfbuchspackung bei anderen Ausführungen After Sales Service kontaktieren.

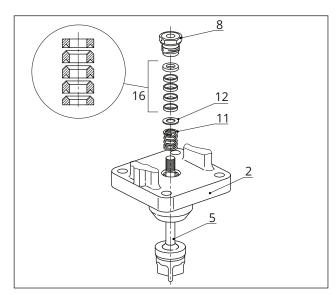


Bild 30: Stopfbuchspackung Standard

- 2 Ventiloberteil
- 11 Feder
- 5 Kegel mit Kegelstange
- 12 Scheibe
- 8 Gewindebuchse (Packungsmutter)
- 16 Packungsringe

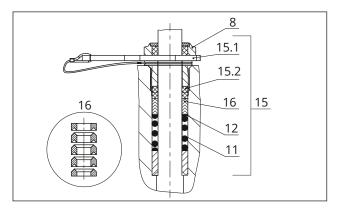


Bild 31: ADSEAL-Packung

- Gewindebuchse (Packungsmutter)
- 15.1 Distanzscheibe mit Haltering
- 11 Feder
- 15.2 Dichtringe
- 12 Scheibe
- 16 Packungsringe
- 15 Packungssatz

a) Normalausführung

Packung Standard (PTFE)

- 1. Gehäusemuttern (14) schrittweise über Kreuz lösen.
- 2. Flansch (2) und Kegel mit Kegelstange (5) vom Gehäuse (1) abheben.
- 3. Kupplungsmutter (9) und Kontermutter (10) von der Kegelstange abschrauben.
- 4. Gewindebuchse (8) herausdrehen.
- 5. Kegel mit Kegelstange (5) aus dem Flansch (2) herausziehen.
- 6. Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen.
- 7. Beschädigte Teile erneuern. Packungsraum sorgfältig säubern.
- 8. Alle Packungsteile sowie die Kegelstange (5) mit einem geeigneten Schmiermittel bestreichen.
- 9. Kegel mit Kegelstange (5) senkrecht in das Gehäuse (1) einführen und konzentrisch auf dem Sitz (4) positionieren.

Ausführungen mit V-Port-Kegel: Kegel so ausrichten, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Kegel so ausrichten, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt.

Vgl. Kap. 5.3.2.

- 10. Flansch (2) auf das Gehäuse setzen.
- 11. Stopfbuchsteile mit einem geeigneten Werkzeug vorsichtig über die Kegelstange in den Pa-

- ckungsraum einschieben. Korrekte Anordnung beachten, vgl. Bild 30.
- 12. Kegel (5) fest in den Sitz (4) drücken. Dabei Flansch (2) mit Gehäusemuttern (14) befestigen. Gehäusemuttern schrittweise über Kreuz anziehen. Anzugsmomente beachten.
- 13. Gewindebuchse (8) einschrauben und festziehen. Anzugsmomente beachten.
- 14. Kontermutter (10) und Kupplungsmutter (9) lose auf Kegelstange schrauben.

ADSEAL-Packung

- Vorgehen wie im vorangehenden Abschnitt "Packung Standard (PTFE)" Schritt 1. bis 10. beschrieben.
- 2. Bauteile der Stopfbuchspackung in der folgenden Reihenfolge über die Kegelstange schieben:
 - Feder (11)
 - Unterlegscheibe (12)
 - Packungsringe (16)
- 3. Dichtringe (15.2) über die Kegelstange schieben. Draht der roten Distanzscheibe (15.1) in die Nut des Halterings legen. Haltering über die Kegelstange schieben.
- 4. Rote Distanzscheibe (15.1) zwischen Gewindebuchse (8) und Haltering einfügen, vgl. Bild 31.
- 5. Vorgehen wie im vorangehenden Abschnitt "Packung Standard (PTFE)" Schritt 12. bis 14. beschrieben.

b) Ausführung mit Isolierteil

Packung Standard (PTFE)

- 1. Kupplungsmutter (9) und Kontermutter (10) von der Kegelstangenverlängerung (25) abschrauben.
- 2. Gewindebuchse (8) herausdrehen.
- 3. Schrauben (32) und Muttern (33) entfernen.
- 4. Ventiloberteil (2) vorsichtig über die Kegelstangenverlängerung (25) abheben.
- 5. Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen
- 6. Beschädigte Teile erneuern. Packungsraum sorgfältig säubern.
- 7. Alle Packungsteile sowie die Kegelstangenverlängerung (25) mit einem geeigneten Schmiermittel bestreichen.
- 8. Ventiloberteil (2) vorsichtig über die Kegelstangenverlängerung (25) auf das Isolierteil (21) aufsetzen.

Ausführungen mit V-Port-Kegel: Kegel so ausrichten, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Kegel so ausrichten, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt.

Vgl. Kap. 5.3.2.

- 9. Stopfbuchsteile mit einem geeigneten Werkzeug vorsichtig über die Kegelstangenverlängerung in den Packungsraum einschieben. Korrekte Anordnung beachten, vgl. Bild 30.
- 10. Ventiloberteil mit Schrauben (32) und Muttern (33) befestigen. Anzugsmomente beachten.
- 11. Gewindebuchse (8) einschrauben und festziehen. Anzugsmomente beachten.
- 12. Kontermutter (10) und Kupplungsmutter (9) lose auf Kegelstange schrauben.

ADSEAL-Packung

- Vorgehen wie im vorangehenden Abschnitt "Packung Standard (PTFE)" Schritt 1. bis 8. beschrieben.
- 2. Bauteile der Stopfbuchspackung in der folgenden Reihenfolge über die Kegelstangenverlängerung schieben:
 - Feder (11)
 - Unterlegscheibe (12)
 - Packungsringe (16)
- 3. Dichtringe (15.2) über die Kegelstangenverlängerung schieben.

Draht der roten Distanzscheibe (15.1) in die Nut des Halterings legen.

Haltering über die Kegelstangenverlängerung schieben.

- 4. Rote Distanzscheibe (15.1) zwischen Gewindebuchse (8) und Haltering einfügen, vgl. Bild 31.
- 5. Vorgehen wie im vorangehenden Abschnitt "Packung Standard (PTFE)" Schritt 10. bis 12. beschrieben.

9.4.3 Sitz und Kegel austauschen

• HINWEIS

Beschädigung des Stellventils durch fehlerhafte Instandhaltung!

⇒ Sitz und Kegel dürfen nur ausgetauscht werden, wenn nachfolgende Bedingungen gleichzeitig erfüllt sind:

Instandhaltung

- Die Nennweite des Ventils ist ≤NPS 6.
- Das Ventil ist ohne Druckentlastung ausgeführt.
- Das Ventil ist ohne Balgteil ausgeführt.
- Der Sitz ist als separates Bauteil in das Ventilgehäuse eingeschraubt.
- Im Ventil ist die Stopfbuchspackung Standard oder ADSEAL verbaut.
- ⇒ Für den Austausch von Sitz und Kegel bei anderen Ausführungen After Sales Service kontaktieren.

• HINWEIS

Beschädigung der Dichtflächen an Sitz und Kegel durch fehlerhafte Instandhaltung!

⇒ Sitz und Kegel immer gemeinsam austauschen.

🌣 Tipp

SAMSON empfiehlt, beim Austausch von Sitz und Kegel auch die Stopfbuchspackung auszutauschen, vgl. Kap. 9.4.2.

a) Normalausführung

- 1. Gehäusemuttern (14) schrittweise über Kreuz lösen
- 2. Flansch (2) und Kegel mit Kegelstange (5) vom Gehäuse (1) abheben.
- 3. Flachdichtung austauschen, vgl. Kap. 9.4.1, Abschnitt a) Normalausführung.
- 4. Kupplungsmutter (9) und Kontermutter (10) von der Kegelstange abschrauben.
- 5. Gewindebuchse (8) herausdrehen.
- 6. Kegel mit Kegelstange (5) aus dem Flansch (2) herausziehen.
- 7. Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen
- 8. Sitz (4) mit einem geeigneten Werkzeug herausschrauben.
- 9. Neuen Sitz am Gewinde und am Dichtkonus mit einem geeigneten Schmiermittel bestreichen.
- 10. Sitz (4) einschrauben. Anzugsmomente beachten
- 11. Alle Packungsteile sowie die neue Kegelstange (5) mit einem geeigneten Schmiermittel bestreichen.
 - SAMSON empfiehlt, dabei die Stopfbuchspa-

- ckung auszutauschen, vgl. Kap. 9.4.2, Abschnitta) Normalausführung.
- 12. Neuen Kegel mit Kegelstange (5) senkrecht in das Gehäuse (1) einführen und konzentrisch auf dem Sitz (4) positionieren.

Ausführungen mit V-Port-Kegel: Kegel so ausrichten, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Kegel so ausrichten, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt.

Vgl. Kap. 5.3.2.

- 13. Flansch (2) auf das Gehäuse setzen.
- 14. Stopfbuchsteile mit einem geeigneten Werkzeug vorsichtig über die Kegelstange in den Packungsraum einschieben. Korrekte Anordnung beachten, vgl. Bild 30 und Bild 31.
- 15. Kegel (5) fest in den Sitz (4) drücken. Dabei Flansch (2) mit Gehäusemuttern (14) befestigen. Gehäusemuttern schrittweise über Kreuz anziehen. Anzugsmomente beachten.
- 16. Gewindebuchse (8) einschrauben und festziehen. Anzugsmomente beachten.
- 17. Kontermutter (10) und Kupplungsmutter (9) lose auf Kegelstange schrauben.

b) Ausführung mit Isolierteil

- 1. Kupplungsmutter (9) und Kontermutter (10) von der Kegelstangenverlängerung (25) abschrauben.
- 2. Gewindebuchse (8) herausdrehen.
- 3. Schrauben (32) und Muttern (33) entfernen.
- 4. Ventiloberteil (2) vorsichtig über die Kegelstangenverlängerung (25) abheben.
- 5. Sämtliche Stopfbuchsteile mit geeignetem Werkzeug aus dem Packungsraum herausziehen.
- 6. Gehäusemuttern (14) schrittweise über Kreuz lösen.
- 7. Isolierteil (21) zusammen mit Kegelstangenverlängerung (25), Kegelstange und Kegel (5) vom Gehäuse (1) abheben.
- 8. Flachdichtung austauschen, vgl. Kap. 9.4.1, Abschnitt b) Ausführung mit Isolier- oder Balgteil.
- 9. Sicherstellen, dass die Führungsbuchse (23) nicht beschädigt ist. Ggf. Führungsbuchse mit einem geeigneten Werkzeug austauschen.
- 10. Sitz (4) mit einem geeigneten Werkzeug herausschrauben.

- 11. Neuen Sitz am Gewinde und am Dichtkonus mit einem geeigneten Schmiermittel bestreichen.
- 12. Sitz (4) einschrauben. Anzugsmomente beachten.
- 13. Kegel und Kegelstange (5) mit Montagezange festhalten. Kegelstangenverlängerung (25) mit einem geeigneten Werkzeug abschrauben und aus dem Isolierteil (21) herausnehmen.
- 14. Alle Packungsteile sowie das Kegelstangenende des neuen Kegels (5) mit einem geeigneten Schmiermittel bestreichen.

 SAMSON empfiehlt, dabei die Stopfbuchspackung auszutauschen, vgl. Kap. 9.4.2, Abschnitt b) Ausführung mit Isolierteil.
- 15. Sicherstellen, dass die beiden Sicherungsscheiben (30) noch in der Kegelstangenverlängerung (25) liegen. Ggf. Sicherungsscheiben erneuern.
- 16. Neuen Kegel mit Kegelstange (5) festhalten. Isolierteil (21) aufsetzen. Kegelstangenverlängerung (25) mit geeignetem Werkzeug auf Kegelstange schrauben. Anzugsmomente beachten.
- 17. Isolierteil (21) zusammen mit Kegelstangenverlängerung (25), Kegelstange und Kegel (5) lose auf das Gehäuse (1) setzen.

Ausführungen mit V-Port-Kegel: Isolierteil (21) so auf das Gehäuse setzen, dass das größte V-Port-Segment des Kegels zum Ventilausgang zeigt.

Ausführungen mit Lochkegel: Isolierteil (21) so auf das Gehäuse setzen, dass die zuerst öffnende Bohrung des Kegels zum Ventilausgang zeigt.

Vgl. Kap. 5.3.2.

- 18. Kegel (5) fest in den Sitz (4) drücken. Dabei Isolierteil (21) mit Gehäusemuttern (14) befestigen. Gehäusemuttern schrittweise über Kreuz anziehen. Anzugsmomente beachten.
- 19. Ventiloberteil (2) vorsichtig über die Kegelstangenverlängerung (25) auf das Isolierteil (21) aufsetzen.
- 20. Stopfbuchsteile mit einem geeigneten Werkzeug vorsichtig über die Kegelstangenverlängerung in den Packungsraum einschieben. Korrekte Anordnung beachten, vgl. Bild 30 und Bild 31.
- 21. Ventiloberteil mit Schrauben (32) und Muttern (33) befestigen. Anzugsmomente beachten.
- 22. Gewindebuchse (8) einschrauben und festziehen. Anzugsmomente beachten.
- 23. Kontermutter (10) und Kupplungsmutter (9) lose auf Kegelstange schrauben.

9.5 Ersatzteile und Verbrauchsgüter bestellen

Auskunft über Ersatzteile, Schmiermittel und Werkzeuge erteilen Ihre SAMSON-Vertretung und der After Sales Service von SAMSON.

Ersatzteile

Informationen zu Ersatzteilen stehen im Anhang zur Verfügung.

Schmiermittel

Informationen zu geeigneten Schmiermitteln stehen in der Druckschrift ► AB 0100 zur Verfügung.

Werkzeuge

Informationen zu geeigneten Werkzeugen stehen in der Druckschrift ► AB 0100 zur Verfügung.

10 Außerbetriebnahme

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

▲ GEFAHR

Berstgefahr bei unsachgemäßem Öffnen von druckbeaufschlagten Geräten und Bauteilen!

Stellventile und Rohrleitungen sind Druckgeräte, die bei falscher Handhabung bersten können. Geschossartig herumfliegende Bauteile, Bruchstücke und mit Druck freigesetztes Medium können schwere Verletzungen bis hin zum Tod verursachen. Vor Arbeiten an drucktragenden oder druckhaltenden Bauteilen des Stellventils:

- ⇒ Betroffene Anlagenteile und Ventil inklusive Antrieb drucklos setzen. Auch Restenergien sind zu entladen.
- ⇒ Medium aus betroffenen Anlagenteilen und Ventil entleeren.

A WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

▲ WARNUNG

Verletzungsgefahr durch unter Druck stehende Bauteile und austretendes Medium!

Bei Ventilausführung mit Balgteilabdichtung befindet sich oben am Zwischenstück ein Prüfanschluss.

⇒ Schraube des Prüfanschlusses nicht lösen, während das Ventil druckbeaufschlagt ist.

▲ WARNUNG

Gehörschäden und Taubheit durch hohen Schallpegel!

Im Betrieb können je nach Anlagenbedingungen medienbedingte Geräuschentwicklungen auftreten (z. B. bei Kavitation und Flashing). Zusätzlich können kurzfristige hohe Schalldruckpegel entstehen, wenn ein pneumatischer Antrieb oder pneumatische Anbaugeräte ohne schallreduzierende Elemente schlagartig entlüften. Beides kann das Gehör schädigen.

Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

⇒ Bei Arbeiten in Ventilnähe Gehörschutz tragen.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr durch austretende Abluft oder entweichende Druckluft an pneumatisch betriebenen Komponenten!

Wenn das Ventil mit einem pneumatischen Antrieb oder pneumatischen Anbaugeräten betrieben wird, tritt im Betrieb im Zuge der Regelung bzw. beim Öffnen und Schließen des Ventils Abluft aus, z. B. am Antrieb.

⇒ Bei Arbeiten in unmittelbarer Nähe von pneumatischen Anschlüssen und im Gefahrenbereich von Entlüftungsöffnungen Augenschutz tragen.

▲ WARNUNG

Verletzungsgefahr durch Mediumsreste im Ventil!

Bei Arbeiten am Ventil können Mediumsreste austreten und abhängig von den Mediumseigenschaften zu Verletzungen (z. B. Verbrühungen, Verätzungen) führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Wenn möglich, Medium aus betroffenen Anlagenteilen und Ventil entleeren.
- ⇒ Schutzkleidung, Schutzhandschuhe, Atemschutz und Augenschutz tragen.

Um das Stellventil für Instandhaltungsarbeiten oder die Demontage außer Betrieb zu nehmen, folgende Schritte ausführen:

- Absperrventile vor und hinter dem Ventil schließen, sodass kein Medium mehr durch das Ventil fließt.
- 2. Rohrleitungen und Ventil restlos entleeren.
- 3. Pneumatische Hilfsenergie abstellen und verriegeln, um Stellventil drucklos zu setzen.
- 4. Restenergien entladen.
- 5. Ggf. Rohrleitung und Stellventil-Bauteile abkühlen lassen oder erwärmen.

11 Demontage

Die in diesem Kapitel beschriebenen Arbeiten dürfen nur durch Fachpersonal durchgeführt werden, das der jeweiligen Aufgabe entsprechend qualifiziert ist.

Im Gefährdungsfall:

- ⇒ Wenn möglich, Medium aus betroffenen Anlagenteilen und Ventil entleeren.
- ⇒ Schutzkleidung, Schutzhandschuhe, Atemschutz und Augenschutz tragen.

▲ WARNUNG

Verbrennungsgefahr durch heiße oder kalte Bauteile und Rohrleitungen!

Je nach eingesetztem Medium können Ventilbauteile und Rohrleitungen im Betrieb sehr heiß oder sehr kalt werden und bei Berührung zu Verbrennungen führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

Im Gefährdungsfall:

- ⇒ Bauteile und Rohrleitungen abkühlen lassen oder erwärmen.
- ⇒ Schutzkleidung und Schutzhandschuhe tragen.

▲ WARNUNG

Verletzungsgefahr durch vorgespannte Federn in pneumatischen Antrieben!

Stellventile, die mit Antrieben mit vorgespannten Antriebsfedern aussgestattet sind, stehen unter mechanischer Spannung. Diese Stellventile sind bei Kombination mit pneumatischen SAMSON-Antrieben Typ 3271/3277 erkennbar an den verlängerten Schrauben an der Unterseite des Antriebs.

⇒ Vor Arbeiten am Antrieb, die ein Öffnen des Antriebs erfordern oder bei blockierter Antriebsstange Kraft der Federvorspannung aufheben, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Quetschgefahr durch bewegliche Teile!

Das Stellventil enthält bewegliche Teile (Antriebs- und Kegelstange), die beim Hineingreifen zu Quetschungen führen können.

- ⇒ Nicht ins Joch greifen, solange die pneumatische Hilfsenergie des Antriebs wirksam angeschlossen ist.
- ⇒ Vor Arbeiten am pneumatischen Stellventil pneumatische Hilfsenergie und Stellsignal unterbrechen und verriegeln.
- ⇒ Lauf der Antriebs- und Kegelstange nicht durch Einklemmen von Gegenständen im Joch behindern.
- ⇒ Bei blockierter Antriebs- und Kegelstange (z. B. durch "Festfressen" bei längerer Nichtbetätigung) Restenergien des Antriebs (z. B. Federspannung) vor Lösung der Blockade abbauen, vgl. zugehörige Antriebsdokumentation.

A WARNUNG

Verletzungsgefahr bei unsachgemäßer Demontage der unter Spannung stehenden Verdrehsicherung!

Wenn der Antrieb am Ventil einsatzbereit montiert ist, stehen die Schellen (301) der Verdrehsicherung an der Kegelstange unter Spannung.

- ⇒ Bei Montage- und Demontagearbeiten gemäß den Anleitungen dieser EB vorgehen.
- ⇒ Bei bestehender Kraftübertragung zwischen Antriebsstange und Stange (9) durch die pneumatische Hilfsenergie und/oder Federkraft des Antriebs, die Schrauben (303) der Verdrehsicherung nicht lösen.
- Verdrehsicherung der Kegelstange nur bei demontiertem bzw. kraftentkoppeltem Antrieb demontieren.

Vor der Demontage sicherstellen, dass folgende Bedingungen erfüllt sind:

 Das Stellventil ist außer Betrieb genommen, vgl. Kap. 10.

▲ WARNUNG

Verletzungsgefahr durch Mediumsreste im Ventil!

Bei Arbeiten am Ventil können Mediumsreste austreten und abhängig von den Mediumseigenschaften zu Verletzungen (z.B. Verbrühungen, Verätzungen) führen.

⇒ Betriebsanweisungen des Anlagenbetreibers beachten.

11.1 Ventil aus der Rohrleitung ausbauen

Ausführung mit Flanschen

- Position des Stellventils unabhängig von seiner Verbindung zur Rohrleitung absichern, vgl. Kap. 4.
- 2. Flanschverbindung lösen.
- 3. Ventil aus Rohrleitung herausnehmen, vgl. Kap. 4.

Ausführung mit Anschweißenden

- 1. Position des Stellventils unabhängig von seiner Verbindung zur Rohrleitung absichern, vgl. Kap. 4.
- 2. Rohrleitung vor der Schweißnaht auftrennen.
- 3. Ventil aus Rohrleitung herausnehmen, vgl. Kap. 4.

Ausführung mit Anschraubenden

- Position des Stellventils unabhängig von seiner Verbindung zur Rohrleitung absichern, vgl. Kap. 4.
- 2. Schraubverbindung lösen.
- 3. Ventil aus Rohrleitung herausnehmen, vgl. Kap. 4.

11.2 Antrieb demontieren

Vgl. zugehörige Antriebsdokumentation.

12 Reparatur

Wenn das Stellventil nicht mehr regelkonform arbeitet, oder wenn es gar nicht mehr arbeitet, ist es defekt und muss repariert oder ausgetauscht werden.

• HINWEIS

Beschädigung des Ventils durch unsachgemäße Instandsetzung und Reparatur!

- ⇒ Instandsetzungs- und Reparaturarbeiten nicht selbst durchführen.
- ⇒ Für Instandsetzungs- und Reparaturarbeiten After Sales Service von SAMSON kontaktieren.

12.1 Geräte an SAMSON senden

Defekte Geräte können zur Reparatur an SAMSON gesendet werden.

Für die Einsendung von Geräten bzw. Retouren-Abwicklung folgendermaßen vorgehen:

- Ausnahmeregelung für spezielle Gerätetypen beachten, vgl. Angaben auf ➤ www.samsongroup.com > SERVICE > After Sales Service > Retouren.
- 2. Rücksendungen unter Angabe folgender Informationen über returns-de@samsongroup.com anmelden:
 - Typ
 - Artikelnummer
 - Var.-ID
 - Ursprungsauftrag bzw. Bestellung
 - Ausgefüllte Erklärung zur Kontamination; dieses Formular steht im Internet zur Verfügung: ➤ www.samsongroup.com > SERVICE > After Sales Service > Retouren

Nach Prüfung der Anfrage erhalten Sie einen RMA-Schein.

- 3. Den RMA-Schein und die ausgefüllte und unterschriebene Erklärung zur Kontamination außen gut sichtbar am Packstück anbringen.
- 4. Die Ware an die auf dem RMA-Schein angegebene Lieferadresse senden.

i Info

Weitere Informationen für die Einsendung von Geräten und der Retouren-Abwicklung sind auf folgender Internetseite zu finden:

www.samsongroup.com > SERVICE > After Sales Service

13 Entsorgung

SAMSON ist ein in Europa registrierter Hersteller, zuständige Institution

www.samsongroup.com > Über SAMSON > Umwelt, Soziales & Unternehmensführung > Material Compliance > Elektroaltgeräte (WEEE) WEEE-Reg.-Nr.: DE 62194439

Informationen zu besonders besorgniserregenden Stoffen der REACH-Verordnung finden Sie ggf. auf dem Dokument "Zusatzinformationen zu Ihrer Anfrage/Bestellung" mit den kaufmännischen Auftragsdokumenten. Dieses Dokument listet in diesen Fällen die SCIP-Nummer, mit der weitere Informationen auf der Internetseite der europäischen Chemikalienagentur ECHA abgerufen werden können, vgl. https://www.echa.europa.eu/scip-database.

i Info

Auf Anfrage stellt SAMSON Recyclingpässe für die Geräte zur Verfügung. Bitte wenden Sie sich unter Angabe Ihrer Firmenanschrift an aftersalesservice@samsongroup.com.

₩ Tipp

Im Rahmen eines Rücknahmekonzepts kann SAMSON auf Kundenwunsch einen Dienstleister mit Zerlegung und Recycling beauftragen.

- ⇒ Bei der Entsorgung lokale, nationale und internationale Vorschriften beachten.
- ⇒ Alte Bauteile, Schmiermittel und Gefahrenstoffe nicht dem Hausmüll zuführen.

14 Zertifikate

Diese Erklärungen stehen auf den nachfolgenden Seiten zur Verfügung:

- Konformitätserklärung nach Druckgeräterichtlinie 2014/68/EU:
 - Produktionsland Deutschland
 - Produktionsland Frankreich
- Konformitätserklärung nach Maschinenrichtlinie 2006/42/EG für Stellventile Typ 3241-1 und 3241-7
- Einbauerklärung nach Maschinenrichtlinie
 2006/42/EG für das Ventil Typ 3241 mit anderen
 Antrieben als Antrieb Typ 3271 oder 3277
- Konformitätserklärung gemäß den Anforderungen der TSG D7002-2006 für chinesische Druckgeräte

Die abgedruckten Zertifikate entsprechen dem Stand bei Drucklegung. Die jeweils aktuellsten Zertifikate liegen im Internet unter dem Produkt ab:

▶ www.samsongroup.com > Produkte > Ventile und Armaturen > 3241

Weitere, optionale Zertifikate stehen auf Anfrage zur Verfügung.

EU-KONFORMITÄTSERKLÄRUNG EU DECLARATION OF CONFORMITY

Modul A/Module A

SAMSON erklärt in alleiniger Verantwortung für folgende Produkte:/For the following products, SAMSON hereby declares

under its sole responsibility:

Geräte/Devices	Bauart/Series	Typ/Type	Ausführung/Version
Durchgangsventil/Globe valve	240	3241	DIN, Gehäuse GG, DN 65-125, Gehäuse GGG, DN 50-80, Fluide G2, L1, L2 ¹ / DIN, body of cast iron, DN 65-125, body of spheroidal-graphite iron, DN 50-80, fluids G2, L1, L2 ¹)
Durchgangsventil/Globe valve	240	3241	DIN, Gehäuse Stahl u.a., DN 40-100, Fluide G2, L2 ²⁾ DIN, body of steel, etc., DN 40-100, fluids G2, L2 ²⁾
Durchgangsventil/Globe valve	240	3241	ANSI, Gehäuse GG, Class 250, NPS 1 ½ bis NPS 2, Class 125, NPS 2 ½ bis NPS 4, Fluide G2, L1, L2¹¹) ANSI, body of cast iron, Class 250, NPS 1 ½" to NPS 2, Class 125, NPS 2 ½" to NPS 4, fluids G2, L1, L2¹¹)
Dreiwegeventil/Three-way valve	240	3244	DIN, Gehäuse GG, DN 65-125, Gehäuse GGG, DN 50-80, Fluide G2, L1, L2 ¹ / DIN, body of cast iron, DN 65-125, body of spheroidal-graphite iron, DN 50-80, fluids G2, L1, L2 ¹)
Dreiwegeventil/Three-way valve	240	3244	DIN, Gehäuse Stahl u.a., DN 40-100, Fluide G2, L2 ²⁾ DIN, body of steel, etc., DN 40-100, fluids G2, L2 ²⁾
Schrägsitzventil/Angle seat valve		3353	DIN, Rotgussgehäuse, alle Fluide DIN, red brass body, all fluids
Schrägsitzventil/Angle seat valve		3353	DIN, Gehäuse Stahl, Fluide G2, L1, L2 ¹⁾ DIN, body of steel, fluids G2, L1, L2 ¹⁾
Durchgangsventile/Globe valve	V2001	3321	DIN, Gehäuse GG, DN 65-100, Fluide G2, L1, L2 ¹⁾ / DIN, body of cast iron, DN 65-100, fluids G2, L1, L2 ¹⁾
Durchgangsventile/Globe valve	V2001	3321	ANSI, Gehäuse GG, NPS 2 ½ bis NPS 4, Fluide G2, L1, L2 ¹⁾ / ANSI, body of cast iron, NPS 2 ½ to NPS 4, fluids G2, L1, L2 ¹⁾
Dreiwegeventil/Three-way valve	V2001	3323	DIN, Gehäuse GG, DN 65-100, Fluide G2, L1, L2 ¹⁾ / DIN, body of cast iron, DN 65-100, fluids G2, L1, L2 ¹⁾
Dreiwegeventil/Three-way valve	V2001	3323	ANSI, Gehäuse GG, NPS 2 ½ bis NPS 4, Fluide G2, L1, L2 ¹⁾ / ANSI, body of cast iron, NPS 2 ½ to NPS 4, fluids G2, L1, L2 ¹⁾
Dreiwegeventil/Three-way valve	250	3253	DIN, Gehäuse GG, DN 200 PN 10, Fluide G2, L1, L2 ¹⁾ / DIN, body of cast iron, DN 200 PN 10, fluids G2, L1, L2 ¹⁾

¹⁾ Gase nach Art. 4 Abs.1 Pkt. c.i zweiter Gedankenstrich//Gases according to Article 4(1)(c.i), second indent Flüssigkeiten nach Art. 4 Abs.1 Pkt. c.ii//Liquids according to Article 4(1)(c.ii)

die Konformität mit nachfolgender Anforderung:/that the products mentioned above comply with the requirements of the following standards:

Richtlinie des Europäischen Parlaments und des Rates zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Druckgeräten auf dem Markt/Directive of the European Parliament and of the Council on the harmonization of the laws of the Member States relating to the making available on the market of pressure equipment	2014/68/EU	vom 15. Mai 2014/ of 15 May 2014
Angewandtes Konformitätsbewertungsverfahren für Fluide nach Art. 4 Abs. 1/ Applied conformity assessment procedure for fluids according to Article 4(1)	Modu	l A/Module A

Angewandte technische Spezifikation/Technical standards applied: DIN EN 12516-2, DIN EN 12516-3, ASME B16.34

Hersteller/Manufacturer: SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany

Frankfurt am Main, 23. Februar 2017/23 February 2017

Klaus Hörschken

Zentralabteilungsleiter/Head of Central Department Entwicklung Ventile und Antriebe/R&D, Valves and Actuators Dr. Michael Heß

Zentralabteilungsleiter/Head of Central Department Product Management & Technical Sales

i.V. Wans With

²⁾ Gase nach Art. 4 Abs.1 Pkt. c.i zweiter Gedankenstrich//Gases according to Article 4(1)(c.i), second indent Flüssigkeiten nach Art. 4 Abs.1 Pkt. c.ii zweiter Gedankenstrich//Liquids according to Article 4(1)(c.ii), second indent

EU-KONFORMITÄTSERKLÄRUNG

Modul D / N° CE-0062-PED-D-SAM 001-22-DEU-rev-D

SAMSON erklärt in alleiniger Verantwortung für folgende Produkte:

Geräte	Bauart	Тур	Ausführung		
Stellgerät für Heißwasser und Dampf mit Sicherheitsfunktion in heiztechnischen Anlagen	Antrieb 3374-25/-27 (Kraft 1800 N / 3000 N)		3374-25 mit Typ 3241, 42-36 E (2423E), 3374-27 mit Typ 3241, 3214 (2814), Zertifikat-Nr.: 01 202 969/B-24-0010, typgeprüft nach Norm DIN EN 14597:2015		
Stellgerät für Heißwasser und Dampf mit Sicherheitsfunktion in heiztechnischen Anlagen	Antrieb 3374-21/-26 (Kraft 2000 N)				mit Typ 3241, 2811, 2814, 2823, 3321 EU-Baumusterprüfung (Baumuster), Modul B, Zertifikat-Nr.: 01 202 931/B-15-0030-01, typgeprüft nach Norm DIN EN 14597:2015
Stellgerät für Wasser und Wasser- dampf mit Sicherheitsfunktion in heiztechnischen Anlagen	Antrieb 5725-310/-313/-320/-323 Antrieb 5725-810/-820 Antrieb 5825-10/-13/-20/-23 (Kraft 500 N) (Erzeugnisnummer 2770)		mit Typ 3214 (2814), 2423 (2823), 3213 (2710), 3222 (2710), 2488 (2730), 2489 (2730) EU-Baumusterprüfung (Baumuster), Modul B, Zertifikat-Nr.: 01 202 641/B-19-0017-01, typgeprüft nach Norm DIN EN 14597:2015, Anhang DX		
Stellgerät für Wasser und Wasser- dampf mit Sicherheitsfunktion in heiztechnischen Anlagen	Antrieb 5827-A11 5827-A12 erät für Wasser und Wasser- pf mit Sicherheitsfunktion in 5827-A15		mit Typ 3214 (2814), 2423 (2823), 3213 (2710), 3222 (2710), 2488 (2730), 2489 (2730) EU-Baumusterprüfung (Baumuster), Modul B, Zertifikat-Nr.: 01 202 641/B-19-0017-01, typgeprüft nach Norm DIN EN 14597:2015, Anhang DX		
Sicherheitsabsperreinrichtung für Gasbrenner und Gasgeräte 240		3241G	Ausrüstungsteile für Gas- und Druckgeräte Absperrventil, automatisch, Ventilklasse D Typ 3241-1-Gas und 3241-7-Gas, Werkstoff 1.0619 oder 1.4408, weichdichtend mit Balg, DN15 bis DN150, PN40 Antrieb 3271 oder 3277 mit 3/2-Wege-Magnetventil, EU-Baumusterprüfung (Baumuster), Modul B, Zertifikat-Nr.: 0000		

die Konformität mit nachfolgender Anforderung:

Richtlinie des Europäischen Parlaments und des Rates zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Druckgeräten auf dem Markt		vom 15. Mai 2014
Angewandtes Konformitätsbewertungsverfahren für Fluide nach Art. 4 Abs. 1	Modul D	Zertifikat-Nr.: N°CE-0062-PED-D-SAM 001-22- DEU-rev-D durch Bureau Veritas 0062

Das Qualitätssicherungssystem des Herstellers wird von folgender notifizierter Stelle überwacht: Bureau Veritas Services SAS, 4 place des Saisons, 92400 Courbevoie, France

Angewandte harmonisierte Normen und technische Standards: EN 12516-2, EN 12516-3, EN 12266-1, ASME B16.34, EN 60534-4, DIN EN 161:2013-04 (3241G), DIN EN 16678:2016-02 (3241G)

Hersteller: SAMSON AKTIENGESELLSCHAFT, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany

Frankfurt am Main, 17.02.2025

Dr. Andreas Widl

Vorsitzender des Vorstandes (CEO)

where Will

Sebastian Krause

Vice President Product Development

EU-KONFORMITÄTSERKLÄRUNG

Modul H / N° CE-0062-PED-H-SAM 001-22-DEU-rev-B

SAMSON erklärt in alleiniger Verantwortung für folgende Produkte:

Geräte	Bauart	Тур	Ausführung
			EN, Gehäuse Grauguss ab DN 150, Gehäuse Sphäroguss ab DN 100,
Durchgangsventil	240	3241	Fluide G2, L1, L2 ¹⁾ EN/ANSI, Gehäuse Stahl u.a., alle Fluide
			EN, Gehäuse Grauguss ab DN 150, Gehäuse Sphäroguss ab DN 100,
Dreiwegeventil	240	3244	Fluide G2, L1, L2 ¹⁾
			EN/ANSI, Gehäuse Stahl u.a., alle Fluide
Tieftemperaturventil	240	3248	EN/ANSI, alle Fluide
Durchgangsventil	250	3251	EN/ANSI, alle Fluide
Durchgangsventil	250	3251-E	EN/ANSI, alle Fluide
Dreiwegeventil	250	3253	EN/ANSI, Gehäuse Stahl u.a., alle Fluide
Durchgangsventil	250	3254	EN/ANSI, alle Fluide
Eckventil	250	3256	EN/ANSI, alle Fluide
Split-Body-Ventil	250	3258	EN, alle Fluide
IG-Eckventil	250	3259	EN, alle Fluide
Donah was a sawa shila	1/0004	2224	EN, Gehäuse Stahl u.a., alle Fluide
Durchgangsventile	V2001	3321	ANSI, alle Fluide
Desires	1/0004	2222	EN, Gehäuse Stahl u.a., alle Fluide
Dreiwegeventil	V2001	3323	ANSI, alle Fluide
Schrägsitzventil		3353	EN, Gehäuse Stahl u.a., alle Fluide
		3381-1	EN/ANSI, Einzeldrosselscheibe mit Anschweißende, alle Fluide
Drosselschalldämpfer	3381	3381-3	EN/ANSI, alle Fluide
		3381-4	EN/ANSI, Einzeldrosselscheibe mehrstufig mit Anschweißende, alle Fluide
Durchgangsventil	240	3241	ANSI, Gehäuse Grauguss, Class 125, ab NPS 5, Fluide G2, L1, L21)
Tieftemperaturventil	240	3246	EN/ANSI, alle Fluide
Dreiwegeventil	250	3253	EN, Gehäuse Grauguss ab DN 200 PN16, Fluide G2, L1, L2 ¹
Durchgangsventil	290	3291	ANSI, alle Fluide
Eckventil	290	3296	ANSI, alle Fluide
Tieftemperaturventil		3588	ANSI, bis NPS 6, Class 600, alle Fluide
Durchgangsventil	590	3591	ANSI, alle Fluide
Eckventil	590	3596	ANSI, alle Fluide
Tieftemperaturventil	590	3598	ANSI, NPS 3 bis NPS 8, Class 900, alle Fluide
Regelventil	590	3595	ANSI, alle Fluide
Durchgangsventil	SMS	241GR	EN/ANSI, alle Fluide
Durchgangsventil	SMS	251GR	EN/ANSI, alle Fluide
Durchgangsventil	SMS	261GR	EN/ANSI, alle Fluide

¹⁾ Gase nach Art. 4 Abs.1 Pkt. c.i zweiter Gedankenstrich

Flüssigkeiten nach Art. 4 Abs.1 Pkt. c.ii

die Konformität mit nachfolgender Anforderung:

Richtlinie des Europäischen Parlaments und des Rates zur Harmonisierung der Rechts- vorschriften der Mitgliedstaaten über die Bereitstellung von Druckgeräten auf dem Markt	2014/68/EU	vom 15. Mai 2014
Angewandtes Konformitätsbewertungsverfahren für Fluide nach Art. 4 Abs. 1	Modul H	Zertifikat-Nr.: N°CE-0062-PED-H-SAM 001-22-DEU-rev-B durch Bureau Veritas 0062

Das Qualitätssicherungssystem des Herstellers wird von folgender notifizierter Stelle überwacht:

Bureau Veritas Services SAS, 4 place des Saisons, 92400 Courbevoie, France

Angewandte harmonisierte Normen und technische Standards:

EN 16668 (inkl. EN 12516-2, EN 12516-3, EN 12266-1), ASME B16.34

Hersteller: SAMSON AKTIENGESELLSCHAFT, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany

Frankfurt am Main, 17.02.2025

Dr. Andreas Widl

Vorsitzender des Vorstandes (CEO)

Andrews Wide

Sebastian Krause

Vice President Product Development

DC014 2025-08

Module A / Modul A

Par la présente, SAMSON REGULATION SAS déclare sous sa seule responsabilité pour les produits suivants : For the following products, SAMSON REGULATION SAS hereby declares under its sole responsibility:

Appareils / Devices	Туре	Exécution / Version	Matériel du corps / body Material	PN Class	DN NPS	Fluides / fluids	
Vanne de décharge /		DIN		P _{max T} = 20°C 10 bar	DN 32 – 65		
Back pressure reducing valve	2371-0	ANSI	Acier / steel	P _{max T= 70°F} 150 psi	NPS 1 1/4 -2	Tous fluides /	
Détendeur alimen-			, Add / Steel	P _{max T = 20°C} 10 bar	DN 32 - 65	all fluids	
taire / Pressure reducing valve	2371-1	ANSI		P _{max T= 70°F} 150 psi	NPS 1 1/4 – 2		
		à membrane with diaphragm	Fonte grise / cast iron	PN25	DN 65 - 125		
Vanne de régulation passage droit /	2423	à soufflet	Fonte sphéroïdale / spheroidal graphite iron	PN25	DN 50 - 125	G2 /L2 ¹⁾	
Globe valve		with bellow Acier / steel		PN16 PN25	DN 65 – 100 DN 50 - 100		
		DIN	Fonte grise / cast iron	PN40 PN10	DN 40 - 100 DN 125 - 150		
		DIN	Fonte grise & fonte sphéroïdale / cast iron & spheroidal graphite iron	PN16	DN 65 – 125		
Vanne de régulation		DIN	Fonte sphéroïdale / spheroidal graphite	PN 25	DN 50 - 80	G2, L1, L2 ¹⁾	
passage droit / Globe valve	3241	ANSI	Fonte grise / cast iron	CI 125 CI 250	NPS 2 ½ - 4 NPS 1 ½ - 2		
		DIN	Acier / steel	PN10 PN16 PN25	DN 32 – 100 DN 32 – 50 DN 32 - 40	Tous fluides / all fluids	
		ANSI		CI 150	NPS 1 1/4 - 2		
		DIN	Fonte grise / cast iron	PN10 PN16	DN 125 – 150 DN 65 – 125	G2, L1, L2 ¹	
Vanne de régulation 3 voies / 3244 3-way Valve		DIN	Acier / steel	PN10 PN16 PN25	DN 32 – 100 DN 32 – 50 DN 32 - 40	Tous fluides / all fluids	
		ANSI		CI 150	NPS 1 1/4 - 2		
Vanne de régulation passage droit /	3251	DIN ANSI	Acier / steel	PN16 PN25 CI 150	DN 32 - 50 DN 32 - 40 NPS 1 1/4 - 2	Tous fluides / all fluids	
Globe valve Vanne équerre /	0050	DIN		PN16	DN 32 – 50	Tous fluides /	
Angle valve	3256	ANSI	Acier / steel	CI 150	NPS 1 1/4 - 2	all fluids	
Vanne à segment sphérique / Segment	3310	DIN	Acier / steel	PN10 PN16 PN25	DN 40 – 50 DN 80 – 100 DN 40	Tous fluides / all fluids	
ball valve		ANSI		CI 150	NPS 1 ½ – 2		
		DIN ANSI	Fonte grise / cast iron	PN16 CI 125	DN 65 – 100 NPS 2 ½ - 4		
Vanne de régulation passage droit /	3321	DIN	Fonte sphéroïdale / spheroidal graphite iron	PN25	DN 50 – 80	G2, L1, L2 ¹⁾	
Globe valve		ANSI	Acier / steel	CI 150	NPS 1 ½ - 2	Tous fluides / all fluids	
Vanne de régulation		DIN	Fonte grise / cast iron : GJL-250	PN16	DN 65 - 100		
3 voies / 3-way Valve	3323	DIN	Fonte sphéroïdale / spheroidal graphite iron	PN25	DN 50 – 80	G2, L1, L2 ¹⁾	
Vanne papillon / Butterfly valve	3331	DIN	Acier / steel	PN10 PN 16-20	DN 50 – 100 DN 50	Tous fluides / all fluids	
Dutterny valve		ANSI	Acier / steel	CI 150	NPS 2	an naius	
		DIN	Acier / steel	P _{max T = 20°C} 10 bar P _{max T = 20°C} 16 bar P _{max T = 70°F} 150 psi	DN 32 – 100 DN 32 – 50	Tous fluides / all fluids	
Vanne à membrane	/ 3345 _{DIN}			or 230 psi Pmax T = 20°C 10 bar	NPS 1 ½ – 2 DN 125 – 150	an nuius	
/ Diaphragm valve		Fonte grise & fonte sphéroïdale /	P _{max T} = 20°C 16 bar P _{max T} = 20°C 40 bar	DN 65 – 125 DN 40 – 50	G2, L1, L2 ¹⁾		
		ANSI	cast iron & spheroidal graphite iron	P _{max} T= 70°F 150 psi P _{max} T= 70°F 230 psi P _{max} T= 70°F 580 psi	NPS 2 ½ – 4 NPS 2 ½ – 5 NPS 1 ½ – 2	,,	

DC014 2025-08

Module A / Modul A

Appareils / Devices	Туре	Exécution / Version	Matériel du corps / body Mate- rial	PN Class	DN NPS	Fluides / fluids	
Vanne alimentaire / Sanitary valve	3347	DIN	Acier / steel	P _{max T = 20°C} 10 bar P _{max T = 70°F} 150 psi	DN 125 – 150 NPS 5 – 6	G2, L1, L2 ¹⁾	
Vanne aseptique /	3349	DIN		P _{max T = 20°C} 10 bar P _{max T = 20°C} 16 bar P _{max T = 20°C} 25 bar	DN 32 – 100 DN 32 – 50 DN 32 – 40	Tous fluides /	
Aseptic valve		Acier / steel ANSI	P _{max} T= 70°F 150 psi P _{max} T= 70°F 230 psi P _{max} T= 70°F 360 psi	NPS 1 ¼ – 4 NPS 1 ¼ – 2 NPS 1 ¼ – 1 ½	all fluids		
	3351	DIN	Acier / steel	PN16 PN25	DN 32 - 50 DN 32 - 40	Tous fluides / all fluids	
Vanne Tout ou		ANSI		CI 150	NPS 1 1/4 - 2		
Rien / On-Off Valve		3351	DIN	Fonte grise & fonte sphéroïdale / cast iron & spheroidal graphite iron	PN16	DN 65 – 100	
valve				DIN	Fonte sphéroïdale / spheroidal graphite iron	PN25	DN 50 - 80
		ANSI	Fonte grise / cast iron	CI 125	NPS 2 ½ - 4		
Bride de mesure / Measure flange	5090	5090 DIN	Acier / steel	PN6 PN10 PN16	DN 200 – 500 DN 125 – 350 DN 65 – 200	G2, L2 ¹⁾	
3				PN25 PN40	DN 50 – 125 DN 40 – 100		

¹⁾ Gas selon l'article 4 § 1.c) i) / Gases Acc. to article 4 paragraphs 1.c) i) Liquide selon l'article 4 § 1.c) ii) / Liquids Acc. to article 4 paragraphs 1.c) ii)

la conformité avec le règlement suivant : / the conformity with the following requirement :

La Directive du Parlement Européen et du Conseil d'harmonisation des lois des Etats Membres concernant la mise à disposition sur le marché d'équipements sous pression / Directive of the European Parliament and of the Council on the Harmonization of the laws of the Member States relating of the making available on the market of pressure equipment	2014/68/UE 2014/68/EU	Du / of 15.05.2014
Procédure d'évaluation de la conformité appliquée pour les fluides selon l'Article 4 § 1 Applied conformity assessment procedure for fluids according to Article 4 § 1	Module A / Modul A	

Normes techniques appliquées / Technical standards applied : DIN EN 12516-2, DIN EN 12516-3, ASME B16.34, DIN-EN 60534-4, DIN-EN 1092-1

Fabricant / manufacturer : Samson Régulation SAS, 1, rue Jean Corona, FR-69120 VAULX-EN-VELIN

Vaulx-en-Velin, le 13/08/25

Bruno Soulas

Directeur Stratégie et Développement / Head of Strategy and

Development

DC012 2025-08

Module H / Modul H, N°/ Nr CE-0062-PED-H-SAM 001-23-FRA-rev-A

Par la présente, SAMSON REGULATION SAS déclare sous sa seule responsabilité pour les produits suivants : For the following products, SAMSON REGULATION SAS hereby declares under its sole responsibility:

Appareils / Devices	Туре	Exécution / Version	Matériel du corps / body Material	PN Class	DN NPS	Fluides / fluids				
Vanne de régula-		DIN	Fonte grise & fonte sphéroïdale /	PN 16	DN 150					
		ANSI	cast iron & spheroidal graphite iron	CI 125	NPS 6	G2, L1, L2 ¹⁾				
		DIN	Fonte sphéroïdale / spheroidal graphite iron	PN 25	DN 100 – 150					
tion passage droit /	3241			PN10	DN 125 – 150	Tous fluides / all fluids				
globe valve		DIN		PN16	DN 65 - 150					
· ·			Acier / steel	PN25	DN 50 - 150					
				PN40 CI 150	DN 32 – 150 NPS 2 ½ - 6					
		ANSI		Cl 300	NPS 2 ½ - 6 NPS 1¼ – 6					
		DIN	Fonte grise / cast iron	PN 16	DN 150	G2, L1, L2 ¹⁾				
		Diiv	1 onto grico / odet iron	PN10	DN 125 – 150	OL, L1, LL				
Vanne de régula-		5.00		PN16	DN 65 – 150	Tous fluides /				
tion 3 voies /	3244	DIN	A : / / I	PN25	DN 50 - 150					
3-way Valve			Acier / steel	PN40	DN 32 - 150	all fluids				
•		ANSI		CI 150	NPS 2 ½ - 6	all fluids				
		ANSI		CI 300	NPS 11/4 - 6					
				PN16	DN 65 - 150					
Vanne de régula-		DIN		PN25	DN 50 – 150	Tous fluides /				
tion passage droit /	3251		Acier / steel	PN40 – 400	DN 32 – 150	all fluids				
globe valve		ANSI		CI 150	NPS 2 ½ – 6					
\/				Cl 300 - 2500	NPS 1 1/4 – 6					
Vanne haute pression /	3252	DIN	Acier / steel	PN40 – 400	DN 32 – 80	Tous fluides /				
High pressure valve		ANSI		CI 300 - 2500	NPS 1 1/4 – 3	all fluids				
	3256	DIN	- Acier / steel	PN16	DN 65 – 150	Tous fluides / all fluids				
Vanne équerre /				PN40 – 400	DN 32 - 150					
Angle valve		ANSI		CI 150	NPS 2 ½ – 6					
				CI 300 - 2500 PN10	NPS 1 ½ – 6 DN 150					
	3310	DIN	DIN Acier / steel ANSI Fonte sphéroïdale /	PN16	DN 80 – 150	Tous fluides / all fluids				
Vanne à segment				PN25	DN 50 - 150 DN 50 - 150					
sphérique /				PN40	DN 40 – 150					
Segment ball valve				CI 150	NPS 3 – 6					
		ANSI		CI 300	NPS 1 ½ – 6					
Vanne de régula-	3321					DIN	spheroidal graphite iron	PN 25	DN 100	G2, L1, L2 ¹⁾
tion passage droit /		DIN	Acier / steel	PN16	DN 65 - 100	Tous fluides / all fluids				
globe valve				PN40	DN 32- 100 NPS 2 ½ - 4					
		ANSI		CI 150 CI 300	NPS 2 ½ – 4 NPS 1½ – 4					
	3323				DIN	Fonte sphéroïdale / spheroidal graphite iron	PN 25	DN 100	G2, L1, L2 ¹⁾	
Vanne de régula- tion 3 voies /		DIN		PN16	DN 65 – 100	Tous fluides / all fluids				
3-way Valve			Acier / steel	PN40	DN 32 - 100					
		ANSI		CI 150 CI 300	NPS 2 ½ – 4 NPS 1¼ – 2					
Vanne papillon / Butterfly valve	3331	DIN ANSI	Acier / steel	PN10	DN 150 – 400	Tous fluides / all fluids				
				PN16 - 20	DN 80 - 400					
				PN25 - 50	DN 50 - 400					
				CI 150 CI 300	NPS 3 – 16 NPS 2 - 16					
\/ \		5 ANSI _	Fonte grise & fonte sphéroïdale /	P _{max T= 70°F} 150 psi	NPS 5 – 6	C0 14 10 1)				
Vanne à membrane /	3345		cast iron & spheroidal graphite iron	P _{max T= 70°F} 230 psi	NPS 6	G2, L1, L2 ¹⁾				
membrane / Diaphragm valve			Acier / steel	P _{max T= 70°F} 150 -	NPS 2 ½ – 6	Tous fluides /				
pagiii +ai+0			Aciei / steel	230 psi	NI 0 2 /2 - 0	all fluids				

DC012 2025-08

Module H / Modul H, N°/ Nr CE-0062-PED-H-SAM 001-23-FRA-rev-A

Appareils / Devices	Туре	Exécution / Version	Matériel du corps / body Material	PN Class	DN NPS	Fluides / fluids					
Vanne alimentaire / Sanitary valve	3347	DIN	Acier / steel	$P_{max T} = 20^{\circ}C$ 16 bar $P_{max T} = 20^{\circ}C$ 40 bar $P_{max T} = 20^{\circ}C$ 63 bar	DN 150 DN 65 – 150 DN 32 – 150	G2, L1, L2 ¹⁾					
		ANSI		P _{max} T= 70°F 230 psi P _{max} T= 70°F 580 psi P _{max} T= 70°F 910 psi	NPS 6 NPS 2 ½ – 6 NPS 1 ¼ – 6						
Vanne aseptique / Aseptic valve	3349_HV01	DIN	Acier / steel	P _{max T} = 20°C 16 bar P _{max T} = 20°C 25 bar	DN 65 – 100 DN 50 – 100	Tous fluides / all fluids					
		ANSI		P _{max} T= 70°F 230 psi P _{max} T= 70°F 360 psi	NPS 2 ½ – 4 NPS 2 – 4						
	3351	DIN	Fonte sphéroïdale / spheroidal graphite iron	PN 25	DN 100	G2, L1, L2 ¹⁾					
Vanne Tout ou Rien / On-Off Valve		3351	DIN	Acier / steel	PN16 PN25 PN40	DN 65 – 100 DN 50 – 100 DN 32 – 100	Tous fluides /				
										ANSI	
Bride de mesure / Measure flange	5090				PN10	DN 400 – 500					
		0 DIN	Acier / steel	PN16	DN 250 - 500	G2, L2 ¹⁾					
				PN25	DN 150 – 500						
				PN40	DN 125 – 500						

¹⁾ Gas selon l'article 4 § 1.c) i) / Gases Acc. to article 4 paragraphs 1.c) i) Liquide selon l'article 4 § 1.c) ii) / Liquids Acc. to article 4 paragraphs 1.c) ii)

 $\label{laconformity} \mbox{ avec le règlement suivant : / the conformity with the following requirement:}$

La Directive du Parlement Européen et du Conseil d'harmonisation des lois des Etats Membres concernant la mise à disposition sur le marché d'équipements sous pression / Directive of the European Parliament and of the Council on the Harmonization of the laws of the Member States relating of the making available on the market of pressure equipment	2014/68/UE 2014/68/EU	Du / of 15.05.2014
Procédure d'évaluation de la conformité appliquée pour les fluides selon l'Article 4 § 1 Applied conformity assessment procedure for fluids according to Article 4 § 1	Module H / Modul H	Certificat n° CE- 0062-PED-H-SAM 001-23-FRA-rev-A

Normes techniques appliquées / Technical standards applied : DIN EN 12516-2, DIN EN 12516-3, ASME B16.34, DIN-EN 60534-4, DIN-EN 1092-1

Le système de contrôle Qualité du fabricant est effectué par l'organisme de certification suivant : The manufacturer's quality management system is monitored by the following notified body:

Bureau Veritas Services SAS N°/Nr 0062, 4 place des Saisons 92400 COURBEVOIE Fabricant / manufacturer : Samson Régulation SAS, 1, rue Jean Corona, FR-69120 VAULX-EN-VELIN

Vaulx-en-Velin, le 13/08/25

Bruno Soulas

Directeur Général – Directeur Stratégie et Développement /

Director general - Head of Strategy and Development

EU-KONFORMITÄTSERKLÄRUNG

Konformitätserklärung für eine vollständige Maschine

nach Anhang II, Absatz 1.A. der Richtlinie 2006/42/EG

Für folgende Produkte:

Pneumatische Stellventile Typ 3241-1/-7 bestehend aus Ventil Typ 3241 und pneumatischem Antrieb Typ 3271 oder Typ 3277

Wir, die SAMSON AG, erklären, dass die oben genannten Maschinen allen einschlägigen Anforderungen der Maschinenrichtlinie 2006/42/EG entsprechen.

Produktbeschreibung Ventil und Antrieb siehe:

- Ventil Typ 3241 (DIN): Einbau- und Bedienungsanleitung EB 8015
- Ventil Typ 3241 (ANSI): Einbau- und Bedienungsanleitung EB 8012
- Antriebe Typ 3271 und 3277: Einbau- und Bedienungsanleitung EB 8310-X

Anbaugeräte wie Stellungsregler, Grenzsignalgeber, Magnetventile, Verblockrelais, Zuluftdruckregler, Volumenstromverstärker und Schnellentlüftungsventile werden im Rahmen der vorliegenden Konformitätserklärung als Maschinenkomponente eingestuft und fallen gemäß § 35 und § 46 des Leitfadens für die Anwendung der Maschinenrichtlinie 2006/42/EG der Europäischen Kommission nicht unter den Anwendungsbereich der Maschinenrichtlinie. SAMSON definiert im Handbuch H 02 "Geeignete Maschinenkomponenten für pneumatische SAMSON-Stellventile mit Konformitätserklärung für vollständige Maschinen" die Spezifikationen und Eigenschaften von geeigneten Maschinenkomponenten, die an die o. g. vollständigen Maschinen angebaut werden dürfen.

Folgende technischen Normen und/oder Spezifikationen wurden angewandt:

- VCI/VDMA/VGB Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018
- VCI/VDMA/VGB Zusatzdokument zum "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018", Stand Mai 2018 in Anlehnung an DIN EN ISO 12100:2011-03

Bemerkung:

Bestehende Restrisiken der Maschine sind den Angaben in der Einbau- und Bedienungsanleitung von Ventil und Antrieb sowie den in der Einbau- und Bedienungsanleitung aufgeführten, mitgeltenden Dokumenten zu entnehmen.

Für die Zusammenstellung der technischen Unterlagen ist bevollmächtigt: SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 20. Dezember 2022

ppa. Norbert Tollas

Senior Vice President

Global Operations

i.V. Peter Scheermesser

i. V. P. Munuser

Director

Product Maintenance & Engineered Products

EINBAUERKLÄRUNG Original

Einbauerklärung nach Maschinenrichtlinie 2006/42/EG

Für folgende Produkte:

Durchgangsventil Typ 3241

Wir, die SAMSON AG, erklären, dass die Durchgangsventile Typ 3241 unvollständige Maschinen im Sinne der Maschinenrichtlinie 2006/42/EG sind und die sicherheitstechnischen Anforderungen nach Anhang I Artikel 1.1.2, 1.1.3, 1.1.5, 1.3.2, 1.3.4 und 1.3.7 der Richtlinie eingehalten werden. Die speziellen Unterlagen nach Anhang VII Teil B wurden erstellt.

Die Inbetriebnahme der von uns gelieferten Erzeugnisse darf nur erfolgen, wenn vorher festgestellt wurde, dass die Maschinen oder Anlagen, in die die Produkte eingebaut werden sollen, den Bestimmungen der EG-Maschinenrichtlinie 2006/42/EG entsprechen.

Der Anwender ist verpflichtet, das Erzeugnis den anerkannten Regeln der Technik und der Einbau- und Bedienungsanleitung entsprechend einzubauen und Gefährdungen, die am Stellventil vom Durchflussmedium und Betriebsdruck sowie vom Stelldruck und von beweglichen Teilen ausgehen können, durch geeignete Maßnahmen zu verhindern.

Die zulässigen Einsatzgrenzen und Montagehinweise der Geräte ergeben sich aus der Einbau- und Bedienungsanleitung und stehen im Internet unter www.samsongroup.com in elektronischer Form zur Verfügung.

Produktbeschreibung Ventil siehe:

- Ventil Typ 3241 (DIN): Einbau- und Bedienungsanleitung EB 8015
- Ventil Typ 3241 (ANSI): Einbau- und Bedienungsanleitung EB 8012

Folgende technischen Normen und/oder Spezifikationen wurden angewandt:

- VCI/VDMA/VGB Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen, Mai 2018
- VCI/VDMA/VGB Zusatzdokument zum "Leitfaden Maschinenrichtlinie (2006/42/EG) Bedeutung für Armaturen vom Mai 2018", Stand Mai 2018 in Anlehnung an DIN EN ISO 12100:2011-03

Bemerkungen:

- Restgefahren siehe Angaben in der Einbau- und Bedienungsanleitung
- Weiterhin sind die in den Einbau- und Bedienungsanleitungen aufgeführten mitgeltenden Dokumente zu beachten.

Für die Zusammenstellung der technischen Unterlagen ist bevollmächtigt:

SAMSON AG, Weismüllerstraße 3, 60314 Frankfurt am Main, Germany Frankfurt am Main, 20. Dezember 2022

ppa. Norbert Tollas

Senior Vice President

Global Operations

i.V. Peter Scheermesser

i. V. P. Muner

Director

Product Maintenance & Engineered Products

KONFORMITÄTSERKLÄRUNG

DC016

Für folgende Produkte

2019-08

Stellventile Typ 3241, 3244, 3249, 3251, 3252, 3256, 3347, 3321, 3349

Zeugnis Nr^o: TSX71002520191340

Bewertungsberichte N r^o: 2019TSFM750-TYP3241 und 2019TSFM751-TYP3251

Die Ventile 3241 und 3251 haben die Bewertungstests gemäß den Anforderungen der chinesischen Druckgeräte TSG D7002-2006 bestanden.

Infolgedessen erfüllen alle oben genannten Rückschlagventile die Anforderungen der TSG D7002-2006 für chinesische Druckgeräte gemäß den folgenden Merkmalen:

- DN 50 bis 200 PN ≤ 5 MPa (50 bar) oder NPS 2 bis NPS 8 Class ≤ 300,
- DN 50 bis 100 PN ≤ 42 MPa (420 bar) oder NPS 2 bis NPS 4 Class ≤ 2500,
- Betriebstemperatur: -29℃ ≤ T ≤ 425℃.

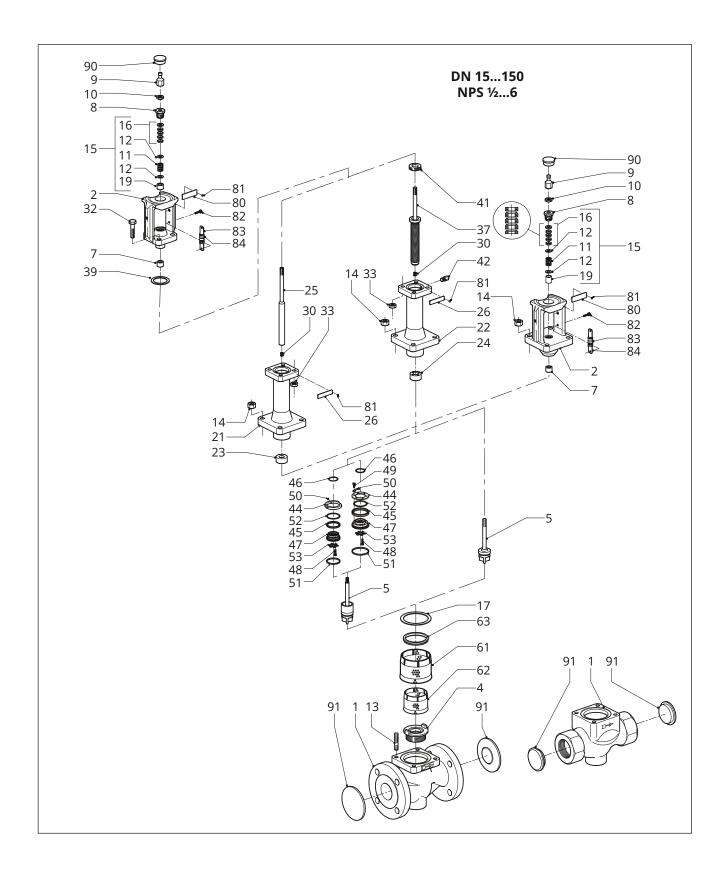
特种设备型式试验证书 Type-Test Certification of Special Equipment (压力管道元件) (Pressure Piping Components) 证书编号/Certification No: TSX71002520191340 制造单位/Manufacturer: SAMSON REGULATION S.A.S 单位地址/Address: 1 rue Jean Corona 69120 Vaulx-en-Velin, France 设备类别/Equipment Category: 金属阀门/Metal Valves 产品名称(品种)/Name of the Products (Categories): 调节阀/Controls Valves 产品型号/Type of the Products: TYP3241 NPS4/CL300, TYP3251 NPS2/CL2500 型式检验报告编号/Number of the Type-Test Report: 2019TSFM750, 2019TSFM751 经型式检验,确认符合 TSG D7002-2006《压力管道元件型式试验规则》的要求。 本证书覆盖以下型号规格产品/ The products have undergone the type test, met the requirements of the TSG D7002-2006 Pressure Piping Components Type Test Regulation, which covers the following specifications: 公称压力/Nominal Pressure ≤PN42.0MPa(CL2500), 公称尺寸/Nominal Size DN50mm~DN100mm (NPS2~NPS4), 公称压力/Nominal Pressure ≤PN5.0MPa(CL300), 公称尺寸/Nominal Size DN50mm~DN200mm (NPS2~NPS8), 适用温度/Operating Temperature -29°C~425°C,调节阀/ Controls Valves. 国家泵阀产品质量监督检验中心 合肥通用机电产品检测院有限公司 National Quality Supervision and Inspection Hefei General Machinery & Electrical Centre of Pump and Valve Products Products Inspection Institute 2019年7月8日/July. 8, 2019

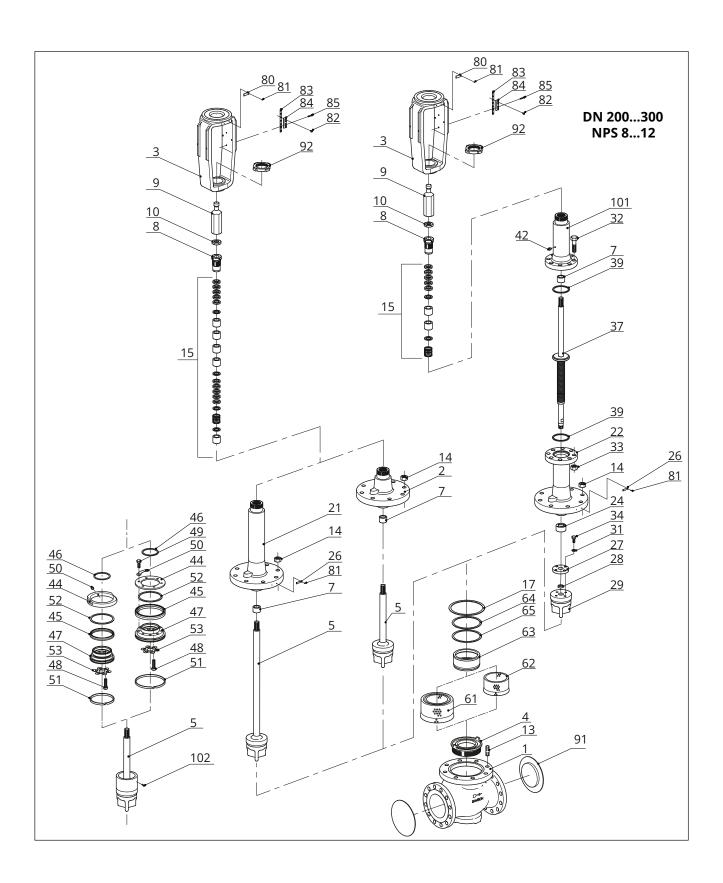
SAMSON REGULATION S.A.

SAMSON REGULATION S.A.

Bruno Soulas Leiter Verwaltung Joséphine Signoles-Fontaine Qualitätsmanager

15 Anhang


15.1 Anzugsmomente, Schmiermittel und Werkzeuge


Vgl. ► AB 0100 für Werkzeuge, Anzugsmomente und Schmiermittel

15.2 Ersatzteile

- 1 Gehäuse/Gehäuse mit integriertem Sitz
- 2 Flansch/Deckel/Ventiloberteil
- 3 Joch
- 4 Sitz (bei Gehäusen mit Sitzaufnahme)
- 5 Kegel (mit Kegelstange)
- 7 Führungsbuchse (Flansch)
- 8 Gewindebuchse (Packungsmutter)
- 9 Kupplungsmutter
- 10 Kontermutter
- 11 Feder
- 12 Scheibe
- 13 Stehbolzen
- 14 Gehäusemutter
- 15 Packungssatz
- 16 Packungsringe
- 17 Flachdichtung (Gehäusedichtung)
- 19 Buchse
- 21 Isolierteil
- 22 Balgteil
- 23 Führungsbuchse (Isolierteil)
- 24 Führungsbuchse (Balgteil)
- 25 Kegelstangenverlängerung
- 26 Schild (Balg- oder Isolierteil)
- 27/28
- 31/34 Befestigungs- und Sicherungsteile
- 29 Kegel für Balgausführung
- 30 Sicherungsscheiben
- 32 Schraube
- 33 Mutter
- 37 Kegelstange mit Abdichtungsbalgteil
- 39 Dichtung
- 41 Mutter
- 42 Verschlussschraube mit Flachdichtring
- 44 Ring/Ringmutter 1)
- 45 Manschette 1)
- 46 Dichtung 1)
- 47 Träger 1)
- 48 Sechskantschraube 1)
- 49 Sechskantschraube 1)
- 50 Sicherung 1)
- Führung ¹⁾ (mehrere Führungen nur bei Ausführung mit Graphitdichtring)
- Ring ¹⁾ (nur bei Ausführung mit Graphit-dichtring)
- 53 Sicherungsring 1)

- 61 Strömungsteiler ST 2 2)
- 62 Strömungsteiler ST 1 oder ST 3 ²⁾
- 63 Ring 2)
- 64 Flachdichtring 2)
- 65 Flachdichtring 2)
- 80 Typenschild
- 81 Kerbnagel
- 82 Schraube
- 83/84 Hubschild
- 85 Schraube
- 90 Abdeckkappe
- 91 Schutzkappe
- 92 Mutter
- 101 Balgdeckel
- 102 Schraube mit Sicherungsring ¹⁾ (nur bei Balgausführung)
- 1) Ausführung mit Druckentlastung
- 2) Ausführung mit Strömungsteiler

15.3 Service

Für Instandhaltungs- und Reparaturarbeiten sowie bei Auftreten von Funktionsstörungen oder Defekten kann der After Sales Service zur Unterstützung hinzugezogen werden.

E-Mail

Der After Sales Service ist über die folgende E-Mail-Adresse erreichbar: aftersalesservice@samsongroup.com

Adressen der SAMSON AG und deren Tochtergesellschaften

Die Adressen der SAMSON AG und deren Tochtergesellschaften sowie von Vertretungen und Servicestellen stehen in SAMSON-Produktkatalogen zur Verfügung oder im Internet unter ▶ www.samsongroup.com.

Notwendige Angaben

Bei Rückfragen und zur Fehlerdiagnose folgende Informationen angeben:

- Auftrags- und Positionsnummer
- Typ, Erzeugnisnummer, Nennweite und Ausführung des Ventils
- Druck und Temperatur des Durchflussmediums
- Durchfluss in m³/h oder in cu.ft/min
- Nennsignalbereich des Antriebs (z. B. 0,2 bis 1 bar)
- Ist ein Schmutzfänger eingebaut?
- Einbauzeichnung

