FICHE TECHNIQUE TB 10e

Vanne de régulation et d'arrêt à axe centré revêtue en PTFE BR 10e

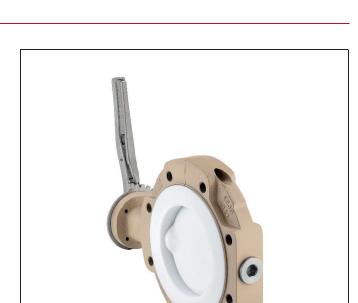
Exécutions DIN et ANSI

CE

Application

Vanne de régulation et d'arrêt à axe centré et fermeture étanche revêtues en PTFE pour le génie chimique et les équipements industriels, en particulier pour les fluides agressifs :

- Diamètre nominal DN 50 à 400 et NPS2 à 16
- Pression nominale PN 10, PN 16 et cl150
- Températures -20 °C à +200 °C (-4 °F à +392 °F)


Le dispositif de réglage est composé d'une vanne papillon revêtue en PTFE avec servomoteur rotatif pneumatique, réducteur à volant et levier manuel à cliquet. Les dispositifs présents dans le système de boîtier ont les caractéristiques spécifiques suivantes :

- Exécution du corps
 - Exécution à oreilles (type Lug)
 - Exécution entre-brides (type Wafer)
- Corps en EN-JS 1049 (0.7043 / A395) avec revêtement en PTFE (épaisseur de paroi min. 3 mm)
- Disque et arbre de vanne en une seule pièce en 1.4313, revêtement en PTFE (épaisseur de paroi min. 3 mm)
- Toutes les pièces en contact avec le fluide sont recouvertes de PTFE.
- Valeur kv élevée grâce à une conception du disque favorisant l'écoulement
- Bonne caractéristique de régulation
- Un collet de vanne plus long permet une installation aisée également dans des conduites isolées.
- TA-Luft selon VDI 2440
- Conforme FDA
- Bride de montage pour servomoteurs selon DIN ISO 5211
- Longueur entre-brides DIN EN 558, série 20
- Longueur entre-brides API 609 Classe 150
- Peinture PU à 2 composants de haute qualité (RAL 1019) comme protection anticorrosion

Exécutions

Les vannes papillons BR 10e sont disponibles, au choix, dans les exécutions suivantes :

- Vanne papillon avec levier
- Vanne papillon avec réducteur à volant
- Vanne d'arrêt avec servomoteur pneumatique quart de tour BR 31a

SAMSO

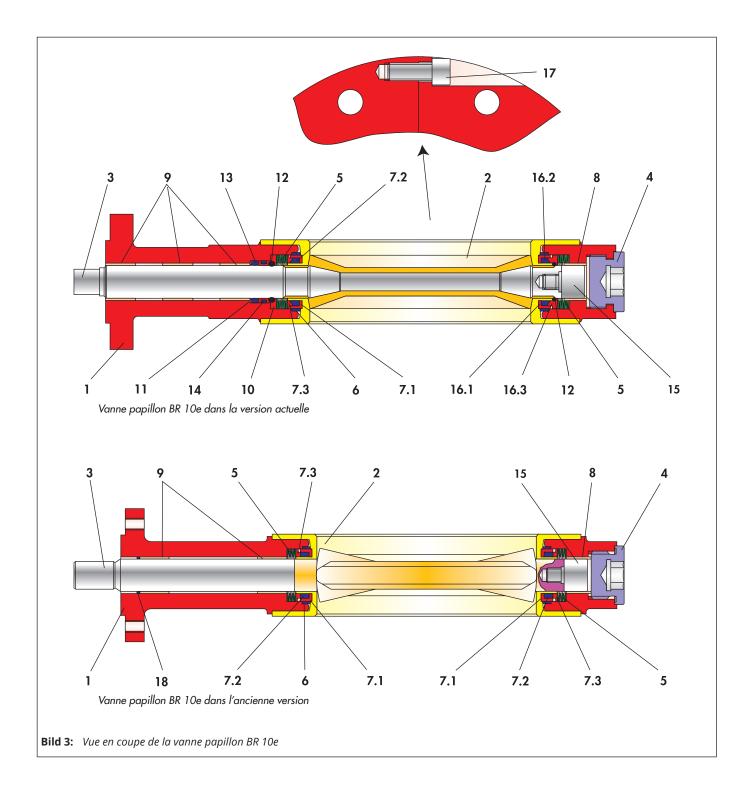

Bild 1: Vanne papillon type Lug revêtue en PTFE BR 10e

Bild 2: Vanne papillon type Lug revêtue en PTFE BR 10e avec servomoteur rotatif BR 31a

PFEIFFER Chemie-Armaturenbau GmbH \cdot Hooghe Weg 41 \cdot D-47906 Kempen Tél. : 02152 2005-0 \cdot Fax : 02152 1580

1 sur 6

Tabelle 1: Nomenclature de la vanne papillon BR 10e

Pos.	Désignation
1	Corps de vanne
2	Gaine
3	Disque
4	Bouchon
5	Rondelles-ressorts
6	Insert
7	Garniture élastomère en com- pression
7.1	Anneau de base

Pos.	Désignation
7.2	Insert pour garniture
7.3	Bague de serrage
8	Palier (lisse)
9	Palier (lisse)
10	Douille à collet
11	Rondelle
12	Joint torique
13	Joint torique

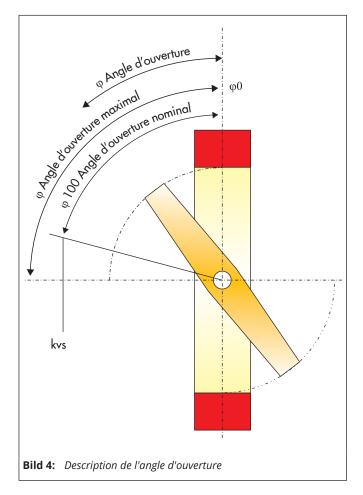
Pos.	Désignation
14	Joint torique
15	Vis de palier
16	Garniture élastomère en com- pression
16.1	Anneau de base
16.2	Insert pour garniture
16.3	Bague de serrage
17	Vis
18	Joint torique

Autres exécutions / En option

- Disque en matériau spécial sur demande
- Disque et arbre de vanne en une seule pièce en 1.4469 / A890-A995 5A
- Exécution pour eau saline
- Revêtement PTFE conducteur
- Exécution basse température (-35 °C)
- Servomoteur rotatif électrique

Fonctionnement

La vanne papillon présente un sens d'écoulement bidirectionnel.


La position du disque (3) détermine le débit à partir de la surface libérée par rapport à la gaine (2).

L'arbre du disque est étanchéifié des deux côtés à l'aide de garnitures (7 et 16) par des rondelles-ressorts (5) et des joints toriques (12, 13 et 14).

L'étanchéité entre le disque (3) et la gaine (2) est assurée par l'élastomère (6) inséré.

Grâce à la position centrale de l'arbre et à une conception du disque favorisant l'écoulement, on obtient une bonne caractéristique de régulation et un kv élevé.

Angle d'ouverture:

Position de sécurité

Selon la façon dont est monté le servomoteur rotatif pneumatique, la vanne de régulation peut adopter l'une des deux positions de sécurité différentes en cas d'équilibrage de pression ou de coupure de l'alimentation d'air.

Vanne papillon avec servomoteur « Ressort ferme » :

La vanne papillon se ferme en cas de coupure d'alimentation d'air. La vanne papillon s'ouvre par augmentation de la pression qui s'oppose à la force des ressorts

Vanne papillon avec servomoteur « Ressort ouvert » :

La vanne papillon s'ouvre en cas de coupure d'alimentation d'air. La vanne papillon se ferme par augmentation de la pression qui s'oppose à la force des ressorts.

i Nota

Avant toute utilisation dans une atmosphère explosible, il faut prendre en compte la possibilité d'utiliser une vanne papillon selon ATEX 2014/34/UE à l'aide de la notice de montage et de mise en service EB 10e!

Combinaisons optionnelles de matériaux

Pour une adaptation optimale dans les conditions de service en vigueur, il est possible de modifier la vanne papillon de type BR 10 e en fonction des matériaux utilisés (corps, arbre de commande, clapet et joints), pour l'adapter à l'application.

Équipements supplémentaires et pièces rapportées

Pour les organes de réglage, les accessoires suivants sont disponibles, au choix, individuellement ou en lot :

- Dispositif de verrouillage
- Servomoteurs rotatifs pneumatiques ou électriques
- Positionneur
- · Commutateurs de fin de course
- Électrovannes
- Filtre Unité de réduction
- Blocs manométriques

Autres équipements sur demande.

Tabelle 2: Caractéristiques techniques générales

	DIN	ANSI				
Diamètre nominal	DN 50 400	NPS2 16				
Pression nominale	PN 10/16	cl150				
Raccordement	Peut être monté entre les brides PN 10/16	Peut être monté entre les brides cl150				
Plage de température	Se référer au diagramm	e pression-température				
Rapport de réglage	50	:1				
Taux de fuite	Taux de fuite A selon DIN EN 12266-1, contrôle P12 (Classe VI selon ANSI / FCI 70-2-2006)					
Longueur entre-brides	DIN EN 558, série 20	API 609 Classe 150				

Tabelle 3: *Matériaux*

	DIN	ANSI					
Corps	EN-JS 1049 / 0.7043 avec gaine en PTFE	A395 avec gaine en PTFE					
Élastomère	FKM						
Joints toriques	FKM (FFKM / Hypalon sur demande)						
Disque et arbre	1.4313 / PTFE ou 1.4469						
Palier (lisse)	PTFE avec 4	0 % de verre					
Garniture de presse-étoupe	PTFE	-FKM					
Rondelles-ressorts	revêteme	ent 1.8159					
Peinture	Polyuréthane 2 composants gris-beige (RAL 10	19) / Peinture spéciale disponible sur demande					

Tabelle 4: Caractéristiques pour le dimensionnement de la vanne de régulation et calcul du bruit Grandeurs caractéristiques des vannes exigées en vue de la réduction du bruit « z » selon VDMA 24422 et calcul du débit selon DIN EN 60534

φ angle d'ou- verture	10°	20°	30°	40°	50°	60°	70°	80°	90°
FL	0.95	0.95	0.92	0.83	0.73	0.65	0.58	0.53	0.50
xT	0.75	0.75	0.73	0.58	0.46	0.36z	0.29	0.24	0.21
Z	0.35	0.30	0.25	0.20	0.17	0.14	0.12	0.11	0.10

Facteur de correction spécifique à la vanne

Pour les liquides $\Delta LF = 0$, Pour les gaz et vapeurs $\Delta LG = 0$

 Tabelle 5: Couples de serrage et couples de décollage

DN	NPS		age admissible a. en Nm	Couple de serrage requis Md en Nm				
DIA	1413	Mate	ériau	5 bar (73 psi)	10 bar (145 psi)	16 bar (232 psi)		
		1.4313	1.4469					
50	2	195	152	40	45	50		
80	3	261	207	50	55	60		
100	4	408	303	70	78	85		
150	6	941	941 749		156	170		
200	8	1108	967	230	262	290		
250	10	2043	1783	300	337	375		
300	12	2043	1783	420	471	520		
400	16	5995	5232	910	980	1060		

Les couples indiqués sont des moyennes mesurées à 20 °C (68 °F). La température de service, le fluide et une durée d'utilisation plus longue peuvent modifier le couple de serrage. Les couples maximaux admissibles mis en œuvre s'appliquent aux matériaux standards du tableau 3.

Diagramme pression-température

Le domaine d'utilisation est déterminé par le diagramme pression-température. Les données de processus et le fluide peuvent influencer les valeurs du diagramme.

Matériau du boîtier: EN-JS 1049 (DIN EN 1092-2)

Matériau d'étanchéité: PTFE

Tabelle 6: Valeurs de pression-température

Standard	-35 °C à 200 °C	

Pression	Diamètre		Température en °C]	
nominale	nominal	-35	-20	0	20	40	60	80	100	120	140	160	180	200	
PN 10	DN 50 400	8	8	10	10	10	10	10	10	10	9.8	8.5	6.1	3.7	Pression
PN 16	DN 50 400	8	8	16	16	16	16	16	16	16	15.8	13.1	8.4	3.7	en bar
cl150	NPS2 NPS16	8	8	16	16	16	16	16	16	16	15.8	13.1	8.4	3.7	Pression en bar

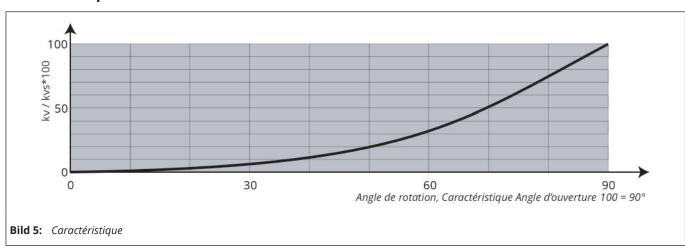

Les armatures de la série BR 10a sont également adaptées à une utilisation dans le domaine du vide.

Tabelle 7: Valeurs kv et angles d'ouverture correspondants

DN	NPS				φ ar	gle d'ouver	ture			
DIN	INPS	10°	20°	30°	40°	50°	60°	70°	80°	90°
50	2	1.5	7	16	35	60	92	132	170	190
80	3	3.5	14	33	57	95	146	240	380	510
100	4	5.5	25	54	95	155	240	395	620	820
150	6	14.5	52	120	215	342	547	940	1380	1800
200	8	20.5	95	215	376	590	940	1540	2400	3200
250	10	33	154	342	607	940	1540	2310	4000	5300
300	12	49	222	504	855	1455	2310	3760	6000	8000
400	16	103	515	960	1465	2450	4280	6523	9210	11420

Tableau 6 - valeurs kv

Caractéristique

Dimensions et poids

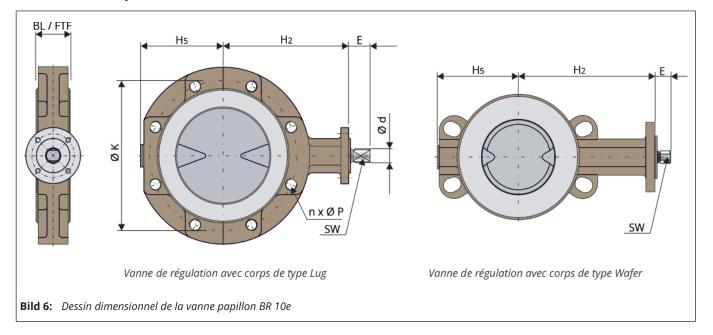


Tabelle 8: Dimensions en mm et poids en kg

	DN	50	80	100	150	200	250	300	400
	NPS	2	3	4	6	8	10	12	16
BL / FTF	Série 20 (PN 10/16)	43	46	52	56	60	68	78	102
DL/FIF	API 609 H150 (cl150)	43	46	52	56	60	68	78	102
	H2 + H5	212	253	289	341	403	465	505	640
	H ₂	132	156	181	206	236	261	266	341
	H ₅	80	97	103	135	167	204	239	299
	PN 10	125	160	180	240	295	350	400	515
ØK	PN 16	125	160	180	240	295	355	410	525
	cl150	120.7	152.4	190.5	241.3	298.5	362	431.8	539.8
	PN 10	4x M16	8x M16	8x M16	8x M20	8x M20	12x M20	12x M20	16x M24
nxØP	PN 16	4x M16	8x M16	8x M16	8x M20	12x M20	12x M24	12x M24	16x M27
	cl150	4x 5/8"	4 x %"	8x 5/8"	8 x ¾"	8 x ¾"	12x ¾"	12x ¾"	16x 11⁄4"
	Ød	14	16	16	24	24	28.5	28.5	42
	Е	18	18	21	24	24	29	29	37
	AS	11	11	14	17	17	22	22	30
R	Raccord DIN ISO		F05	F07	F07	F07	F10	F10	F14
Poids	Type Lug	5.1	7.8	8.8	15.2	24.5	36.3	52.6	105.7
approx. en kg	Type Wafer	2.5	3.8	5.7	9.3	15.5	24.5	31.3	66.9

Choix et dimensionnement du dispositif de réglage

- 1. Détermination de la valeur kv appropriée
- 2. Sélection du DN et kvs selon le Tableau 6
- 3. Vérification de l'utilisation en tenant compte du diagramme pression-température
- 4. Sélection d'un servomoteur approprié
- 5. Équipements supplémentaires

i Nota

Les détails relatifs à la commande ainsi que les exécutions différant de cette description technique doivent être spécifiés, si nécessaire, lors de la confirmation de la commande.

Texte de commande

Vanne papillon revêtue: BR 10e

DN / NPS

PN / ANSI Class

Exécution spéciale éventuelle

Marque du réducteur à volant ou du servomoteur :

Pression de commande : bar

Position de sécurité :

Marque du contact de position : Marque de l'électrovanne :

Positionneur:....

Autres:....