TYPENBLATT TB 10e

BR 10e · PTFE-ausgekleidete zentrische Regelund Absperrklappe

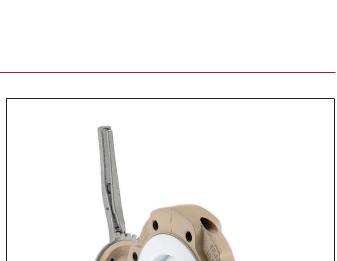
DIN- und ANSI-Ausführung

CE

Anwendung

Dichtschließende zentrische Regel- und Absperrklappe mit PTFE-Auskleidung für die Verfahrenstechnik und den Anlagenbau, insbesondere bei aggressiven Medien:

- Nennweite DN 50 bis 400 und NPS2 bis 16
- Nenndruck PN 10, PN 16 und cl150
- Temperaturen -20 °C bis +200 °C (-4 °F bis +392 °F)


Das Stellgerät besteht aus einer PTFE-ausgekleideten Klappe mit einem pneumatischen Schwenkantrieb, einem Handgetriebe oder einem Rasterhandhebel. Die im Baukastensystem ausgeführten Geräte weisen folgende besonderen Eigenschaften auf:

- Gehäuseausführung
 - Einschraubklappe (Lug-Type)
 - Einklemmklappe (Wafer-Type)
- Gehäuse aus EN-JS 1049 (0.7043 / A395) mit PTFE-Auskleidung (min. 3 mm Wandstärke)
- Klappenscheibe und Klappenwelle einteilig aus 1.4313 mit PTFE-Ummantelung (min. 3 mm Wandstärke)
- Alle medienberührten Teile sind mit PTFE umkleidet
- Hoher kv-Wert durch strömungsgünstiges Scheibendesign
- Gute Regelcharakteristik
- Langer Klappenhals erlaubt den problemlosen Einbau auch in isolierte Leitungen
- TA-Luft nach VDI 2440
- FDA-Konform
- Anbauflansch für Antriebe nach DIN ISO 5211
- Baulänge DIN EN 558, Reihe 20
- Baulänge API 609 Class 150
- Hochwertige 2 Komponenten PU-Beschichtung (RAL 1019) als Schutz gegen korrosive Atmosphäre und Korrosionsbildung

Ausführungen

PTFE-ausgekleidete Klappe wahlweise in folgenden Ausführungen:

- Klappe mit Handhebel und Rasterplatte
- Klappe mit Handgetriebe
- Absperrklappe mit pneum. Schwenkantrieb BR 31a

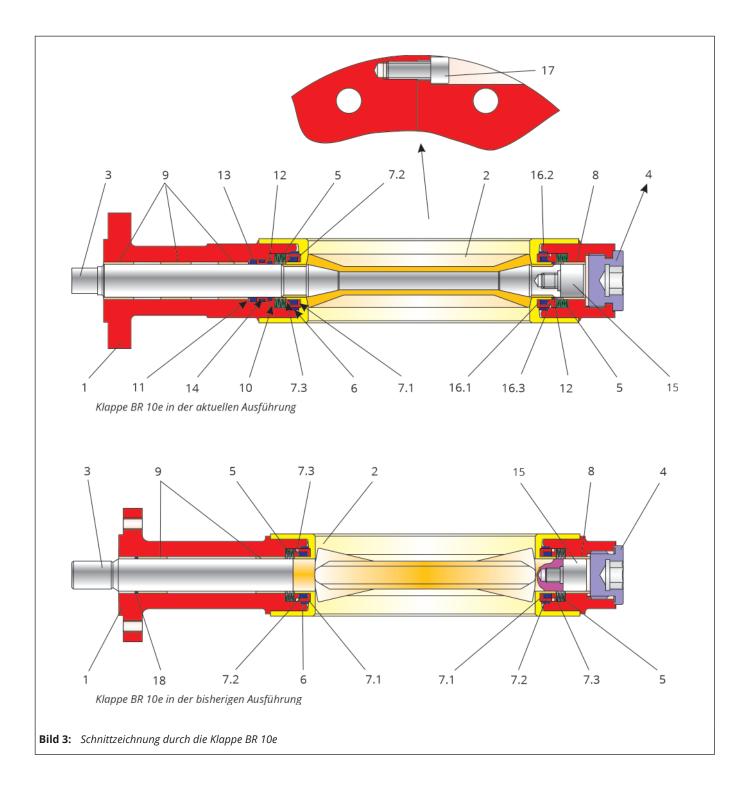

SAMSO

Bild 1: PTFE-ausgekleidete Lug-Type Stellklappe BR 10e

Bild 2: PTFE-ausgekleidete Stellklappe BR 10e mit Schwenkantrieb BR 31a

PFEIFFER Chemie-Armaturenbau GmbH · Hooghe Weg 41 · 47906 Kempen Telefon: 02152 2005-0 · Telefax: 02152 1580 E-Mail: sales-pfeiffer-de@samsongroup.com · Internet: www.pfeiffer-armaturen.com

Tabelle 1: Stückliste der Klappe BR 10e

Pos.	Bezeichnung
1	Klappengehäuse
2	Liner
3	Klappenscheibe
4	Verschlussschraube
5	Tellerfedersatz
6	Einlage
7	Elastomer Presspackung
7.1	Grundring

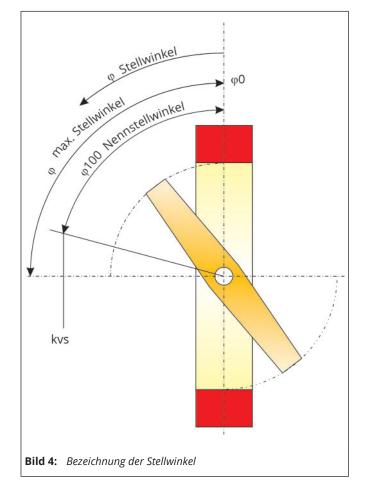
Pos.	Bezeichnung
7.2	Einlage-Presspackung
7.3	Druckring
8	Lagerbuchse
9	Lagerbuchse
10	Bundbuchse
11	Druckring
12	O-Ring
13	O-Ring

Pos.	Bezeichnung
14	O-Ring
15	Lagerschraube
16	Elastomer Presspackung
16.1	Grundring
16.2	Einlage-Presspackung
16.3	Druckring
17	Schraube
18	O-Ring

Weitere Ausführungen / Optionen

- Klappenscheibe aus Sonderwerkstoff auf Anfrage
- Klappenscheibe und Klappenwelle einteilig aus 1.4469 / A890-A995 5A
- Sole-Ausführung
- · Leitfähige Ausführung
- Tieftemperaturausführung (-35 °C)
- Elektrischer Drehantrieb

Funktions- und Wirkungsweise


Die Stellklappe kann bidirektional durchströmt werden. Die Stellung der Klappenscheibe (3) bestimmt die Durchflussmenge mit der gegenüber dem Liner (2) freigegebenen Fläche.

Die Welle der Klappenscheibe wird beidseitig durch tellerfedervorgespannte (5) Presspackungen (7 und 16) sowie über O-Ringe (12, 13 und 14) abgedichtet.

Die Abdichtung zwischen Klappenscheibe (3) und Liner (2) erfolgt durch das eingelegte Elastomer (6).

Durch die zentrische Lagerung der Klappenwelle und durch ein strömungsgünstiges Design der Klappenscheibe wird eine gute Regelcharakteristik und ein hoher kv-Wert erreicht.

Stellwinkel:

Sicherheitsstellung

Je nach Anbau des pneumatischen Schwenkantriebs hat die Regelklappe zwei Sicherheitsstellungen, die bei Druckentlastung sowie bei Ausfall der Hilfsenergie wirksam werden:

- Klappe mit Antrieb "Feder schließt":
 Bei Ausfall der Hilfsenergie wird die Klappe geschlossen. Das Öffnen der Klappe erfolgt bei steigendem Stelldruck gegen die Kraft der Federn.
- Klappe mit Antrieb "Feder öffnet":
 Bei Ausfall der Hilfsenergie wird die Klappe geöffnet.
 Das Schließen der Klappe erfolgt bei steigendem
 Stelldruck gegen die Kraft der Federn.

Bei der Regelklappe ist vor der Verwendung in Ex-Bereichen die Einsetzbarkeit gemäß ATEX 2014/34/EU an Hand der Einbau- und Bedienungsanleitung ► EB 10e zu beachten!

Optionale Werkstoffkombinationen

Für die optimale Anpassung an herrschende Betriebsbedingungen kann die Regelklappe der BR 10e hinsichtlich der verwendeten Werkstoffe (Gehäuse, Schaltwelle, Klappe und Abdichtungen) applikationsbezogen modifiziert werden.

Zusatzausstattungen und Anbauteile

Für die Stellgeräte ist folgendes Zubehör wahlweise einzeln oder in Kombination erhältlich:

- Abschließvorrichtung
- Pneumatische oder elektrische Schwenkantriebe
- Stellungsregler
- Endschalter
- Magnetventile
- Filter-Reduzierstation
- Manometeranbaublöcke

Andere Anbauten nach Spezifikation auf Anfrage möglich.

Tabelle 2: Allgemeine Technische Daten

	DIN	ANSI			
Nennweite	DN 50 400	NPS2 16			
Nenndruck	PN 10/16	cl150			
Anschluss	Montierbar zwischen Flansche PN 10/16	Montierbar zwischen Flansche cl150			
Temperaturbereich	Siehe Druck-Temp	peratur-Diagramm			
Stellverhältnis	50	:1			
Leckrate	Leckrate A nach DIN EN 12266-1, Prüfung P12 (Class VI nach ANSI / FCI 70-2-2006)				
Baulänge	DIN EN 558, Reihe 20 API 609 Class 150				

Tabelle 3: *Werkstoffe*

	DIN	ANSI			
Gehäuse	EN-JS 1049 / 0.7043 mit PTFE-Liner	A395 mit PTFE-Liner			
Elastomer	Fk	CM .			
O-Ringe	FKM (FFKM / Hyp	alon auf Anfrage)			
Scheibe und Welle	1.4313 / PTFI	oder 1.4469			
Lagerbuchse	PTFE mit	40% Glas			
Stopfbuchspackung	PTFE-FKM				
Tellerfedern 1.8159 beschichtet					
Lackierung	2 Komponenten-Polyurethan graubeige (RAL	1019) / Sonderlackierung auf Anfrage möglich			

Tabelle 4: *Kenndaten für Geräusch- und Durchflussberechnung* Akustisch bedingte Armaturenkenngrößen "z" nach VDMA 24422 und Durchflussberechnung nach DIN EN 60534 Stellwinkel.

Stellwinkel φ	10°	20°	30°	40°	50°	60°	70°	80°	90°
FL	0.95	0.95	0.92	0.83	0.73	0.65	0.58	0.53	0.50
xT	0.75	0.75	0.73	0.58	0.46	0.36	0.29	0.24	0.21
Z	0.35	0.30	0.25	0.20	0.17	0.14	0.12	0.11	0.10

Ventilspezifische Korrekturglieder

Bei flüssigen Medien $\Delta LF = 0$, Bei Gasen und Dämpfen $\Delta LG = 0$

Tabelle 5: Drehmomente und Losbrechmomente

DN	NPS		moment c. in Nm cstoff	erf. 5 bar (73 psi)	Drehmoment Md in 10 bar (145 psi)	Nm 16 bar (232 psi)
		1.4313	1.4469		•	
50	2	195	152	40	45	50
80	3	261	207	50	55	60
100	4	408	303	70	78	85
150	6	941	749	140	156	170
200	8	1108	967	230	262	290
250	10	2043	1783	300	337	375
300	12	2043	1783	420	471	520
400	16	5995	5232	910	980	1060

Die angegebenen Momente sind Durchschnittswerte, die bei 20 °C (68 °F) gemessen wurden. Betriebstemperatur, Medium sowie längere Einsatzdauer können die Drehmomente verändern. Die aufgeführten max. zulässigen Drehmomente gelten für den in Tabelle 3 aufgeführten Standardwerkstoff.

Druck-Temperatur Diagramm

Der Einsatzbereich wird durch das Druck-Temperatur Diagramm bestimmt. Prozessdaten und Medium können die Werte des Diagramms beeinflussen.

Gehäusematerial: EN-JS 1049 (DIN EN 1092-2)

Dichtringmaterial: PTFE

Tabelle 6: Druck-Temperatur Werte

Standard	-35 °C bis 200 °C

Nenn- druck	Nennweite		Temperatur in °C												
	Nemiweite	-35	-20	0	20	40	60	80	100	120	140	160	180	200	
PN 10	DN 50 400	8	8	10	10	10	10	10	10	10	9.8	8.5	6.1	3.7	Druck
PN 16	DN 50 400	8	8	16	16	16	16	16	16	16	15.8	13.1	8.4	3.7	in bar
cl150	NPS2 NPS16	8	8	16	16	16	16	16	16	16	15.8	13.1	8.4	3.7	Druck in bar

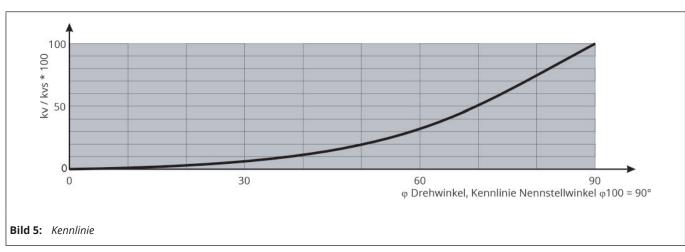

Die Armaturen der BR 10a eignen sich auch für den Einsatz im Vakuum-Bereich

Tabelle 7: kv Werte und zugehörige Öffnungswinkel

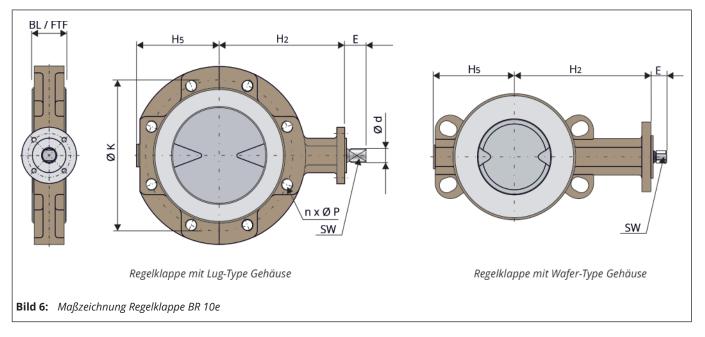

DN	NDC		φ Stellwinkel												
DN	NPS	10°	20°	30°	40°	50°	60°	70°	80°	90°					
50	2	1.5	7	16	35	60	92	132	170	190					
80	3	3.5	14	33	57	95	146	240	380	510					
100	4	5.5	25	54	95	155	240	395	620	820					
150	6	14.5	52	120	215	342	547	940	1380	1800					
200	8	20.5	95	215	376	590	940	1540	2400	3200					
250	10	33	154	342	607	940	1540	2310	4000	5300					
300	12	49	222	504	855	1455	2310	3760	6000	8000					
400	16	103	515	960	1465	2450	4280	6523	9210	11420					

Tabelle 6 - kv-Werte

Kennlinie

Maße und Gewichte

Tabelle 8: Maße in mm und Gewichte in kg

			_						
	DN	50	80	100	150	200	250	300	400
	NPS	2	3	4	6	8	10	12	16
DI / ETE	Reihe 20 (PN 10/16)	43	46	52	56	60	68	78	102
BL / FTF	API 609 H150 (cl150)	43	46	52	56	60	68	78	102
	H2 + H5	212	253	289	341	403	465	505	640
	H ₂	132	156	181	206	236	261	266	341
	H ₅	80	97	103	135	167	204	239	299
	PN 10	125	160	180	240	295	350	400	515
ØK	PN 16	125	160	180	240	295	355	410	525
	cl150	120.7	152.4	190.5	241.3	298.5	362	431.8	539.8
	PN 10	4x M16	8x M16	8x M16	8x M20	8x M20	12x M20	12x M20	16x M24
nxØP	PN 16	4x M16	8x M16	8x M16	8x M20	12x M20	12x M24	12x M24	16x M27
	cl150	4x %"	4 x 5/8"	8x 5/8"	8 x ¾"	8 x ¾"	12x ¾"	12x ¾"	16x 11/4"
	Ød	14	16	16	24	24	28.5	28.5	42
	Е	18	18	21	24	24	29	29	37
	SW		11	14	17	17	22	22	30
DI	DIN ISO Anschluss		F05	F07	F07	F07	F10	F10	F14
Gewicht	Lug-Type	5.1	7.8	8.8	15.2	24.5	36.3	52.6	105.7
ca. kg	Wafer-Type	2.5	3.8	5.7	9.3	15.5	24.5	31.3	66.9

Auswahl und Auslegung des Stellgerätes

- 1. Berechnung des geeigneten kv-Wertes
- 2. Auswahl von DN und kvs-Wert nach Tabelle 6
- 3. Überprüfung des Einsatzes unter Berücksichtigung des Druck-Temperatur Diagramm.
- 4. Auswahl eines geeigneten Antriebes
- 5. Zusatzausstattungen

Bestelltext

PTFE-ausgekleidete Regelklappe: BR 10e

DN / NPS

PN / ANSI Class

evtl.. Sonderausführung

Handgetriebe bzw. Stellantrieb Fabrikat:

Stelldruck: bar Sicherheitsstellung: Zugehörige Typenblätter

Grenzsignalgeber Fabrikat:

Magnetventil Fabrikat:

Stellungsregler:

Sonstiges:

Einbau- und Bedienungsanleitung

• Sicherheitshandbuch

• Für pneumatische Schwenkantriebe

► EB 10e

► SH 10

► TB 31a

Auftragsbezogene Details und von dieser technischen Beschreibung abweichende Ausführungen sind bei Bedarf der entsprechenden Auftragsbestätigung zu entnehmen.